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Abstract

An open question regarding how people develop their models of the world is how new candidates are
generated for consideration out of infinitely many possibilities. We discuss the role that evolutionary
mechanisms play in this process. Specifically, we argue that when it comes to developing a global world
model, innovation is necessarily incremental, involving the generation and selection among random
local mutations and recombinations of (parts of) one’s current model. We argue that, by narrowing
and guiding exploration, this feature of cognitive search is what allows human learners to discover
better theories, without ever grappling directly with the problem of finding a “global optimum,” or
best possible world model. We suggest this aspect of cognitive processing works analogously to how
blind variation and selection mechanisms drive biological evolution. We propose algorithms developed
for program synthesis provide candidate mechanisms for how human minds might achieve this. We
discuss objections and implications of this perspective, finally suggesting that a better process-level
understanding of how humans incrementally explore compositional theory spaces can shed light on
how we think, and provide explanatory traction on fundamental cognitive biases, including anchoring,
probability matching, and confirmation bias.
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1. Introduction

In an 1897 address to the British Association for the Advancement of Science Lord Kelvin
claimed: “There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.” Later, the same year, Rutherford discovered the electron,
a peculiar particle that behaved like a wave in contradiction to prevailing physical theories
of the day (Rutherford, 1911). This spurred a new generation of progress in physics leading
to radically different formalisms like quantum theory that have unlocked a range of other
insights and technologies.

The history of ideas is strewn with these “false summits” and moments of hubristic over-
confidence by the victors of the day. Our most celebrated scientific and cultural innovations
have almost all been usurped in our ongoing struggle to understand the world. In a similar way,
the phenomenology of individual development has its own progression of “aha!” moments,
in which one seems to land on new ways of thinking, or better solutions to problems that
have puzzled us (Kounios & Beeman, 2009). Like the history of science, with the benefit of
hindsight, the opinions of our younger selves will often strike us as excruciatingly naive. With
these general phenomena in mind, it is perhaps surprising that, as a field, we frequently seek to
explain the products of cognition as approximately rational or optimal solutions to challenges
faced by cognizers. Bayesian accounts take the mind to be engaged in (approximate) proba-
bilistic inference about the nature of the environment (Chater, Oaksford, Hahn, & Heit, 2010;
Griffiths & Tenenbaum, 2009; Howson & Urbach, 2006; Tenenbaum, Griffiths, & Kemp,
2006), taking actions that subserve this (Bramley, Lagnado, & Speekenbrink, 2015; Bram-
ley, Gerstenberg, Tenenbaum, & Gureckis, 2018; Gureckis & Markant, 2012; Settles, 2009)
and decisions that marginalize appropriately over our well-calibrated subjective uncertainty
(Maloney & Mamassian, 2009; Oaksford & Chater, 2007). The closely related predictive pro-
cessing tradition and “free energy principle” models the mind as minimizing its free energy,
equivalent to maximizing model probability (Gershman, 2019b), with this determining both
our beliefs (Friston, 2010) and actions (Friston et al., 2016).

On the face of it, neither framework offers a direct solution to the question of how a
cognizer’s overall model space—that is, the set of concrete models or theories they optimize
over—is formed or adapted; nor tells us how close someone’s current theory is to perfection.
At its core, Bayesian inference is a process of pure selection—all the hypotheses are already
there for consideration and one simply updates their probabilities with evidence. Similarly,
the free energy principle describes a process of model optimization—by adjusting parameters
to minimize expected surprise, such an account is guaranteed to optimize its interactions with
its environment with respect to the representational expressivity of the variational approxima-
tion it starts with. Both frameworks seem to leave unanswered questions as to where the state
space of possible models originates from, and if and how it can be extended. In this paper, we
describe recent algorithmic approaches for approximating intractable probabilistic inference
problems and argue they help address these questions. Moreover, we reframe the issue in
evolutionary terms. We argue for a parallel between biological evolution and the haphazard
growth and revision of an individual’s system of concepts, global theory, or world model.
In doing so, we highlight how the algorithms we describe fundamentally operate via blind
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variation and selective retention. In particular, we argue that the evolutionary perspective
reveals why a mechanism for producing random (but local) variation (D. T. Campbell, 1960)
is both a core limitation of how minds work and a core feature of why minds work.

2. Our thesis

We propose that the structure of the conceptual system represented within an individual’s
mind is discovered and adapted through local search over an open pool of candidates, with
small incremental changes (randomly produced, selectively retained) driving innovations just
as natural variation does in biological evolution. The central idea of evolutionary theory is that
the conditions needed for any organized system to emerge is the existence of some mechanism
of repeated blind variation paired with some mechanism and vehicle for selective retention
(Darwin, 1859/2004; Dawkins, 1983). Indeed, this is the only type of mechanism yet discov-
ered that we know to be capable of constructing complex functional design in the absence
of a designer (Dawkins, 1986). Universal Darwinism generalizes this idea beyond biological
kinds to suggest analogous mechanisms of selection explain the emergence of all forms of
functional complexity, including any conceptual system, model, or theory within our minds
(J. O. Campbell, 2016; Hodgson, 2005; Popper et al., 1979; Sydow, 2012).

The notion that evolutionary mechanisms describe aspects of cognitive processing has been
raised a handful of times (cf. Ashby, 1952; Bourgin, Abbott, Griffiths, Smith, & Vul, 2014;
D. T. Campbell, 1960; Plotkin, 1997; Pinker, 2003; Suchow, Bourgin, & Griffiths, 2017). In
particular, advancing this kind of view in psychology, D. T. Campbell (1960) argues that any
cognitive process that appears to do something smarter or more goal-driven than blind vari-
ation and selective retention, can only be doing so because it is exploiting earlier established
expectations about the domain within which it is operating. To illustrate this, Campbell takes
visual perception as a paradigmatic example of the kind of cognitive apparatus we do not
think of as blind. He describes how individual visual receptors can be thought of as exploring
the possibilities of locomotion in many different directions, with this based on an earlier dis-
covery that the measuring of arriving photons is an effective substitute for a more primitive
and energetically costly process of random locomotion: “For the ‘blindness’ of an eyeless
animal there has been substituted a process so efficient that we use it naively as a model
for direct, unmediated knowing.” (D. T. Campbell, 1960, p. 383). The key point is that the
visual system—and, by the same argument, the other inductive biases, heuristics, and tricks
we bring to the table—can be framed as inductive shortcuts that were discovered, refined, and
improved via a long chain of earlier serendipitous discoveries that were, each in turn, selected
for. In other words, the results of our trial-and-error processes become genetically encoded
(on a phylogenetic timescale) or learned (on an ontogenetic timescale). Whenever they are
applied in novel contexts, we are exploiting the results of these processes—and so, in a sense,
relying on the results of earlier blind processes.

Putting blind variation at the heart of conceptual change may seem like a skeptical thesis,
undercutting the prospect of fully understanding the mind, not to mention limiting its potential
for agency. However, we believe some degree of blind variation may be an essential design
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principle for any system to be capable of inductive reasoning, and moreover that this has
implications for how to understand idea generation and distinguish it from the more pedestrian
forms of inference we engage in.

Campbell’s core claim is that evolutionary mechanisms determine how minds grow and
adapt their content: That is, they shape how we form our concepts, theories, and models of
the world. We will argue on these lines that it is through an accumulation of incremental
changes (randomly produced, selectively retained) that new conceptual structure is first dis-
covered, meaning “randomness” plays a starring role in concept change in the same way
natural variation does in biological evolution.1 A consequence of this idea is that it is only
among already-developed candidates that prior expectations can form, or deliberate (model
based) optimization (or selection) can occur. Of course, a large part of everyday cognition is
about employing one’s existing world model to make on-the-spot predictions, explanations,
plans, and so on. Moreover, the new ideas we generate and select among are deeply con-
nected to our earlier ideas. However, we are suggesting that genuine conceptual innovations
are exactly the point at which this foresight falls away. The fact that our new ideas are shaped,
constrained, and evaluated against our existing ideas is the “locality” we refer to in the title
of the paper and that is embodied by the algorithms we describe in the subsequent sections.

Just as modern evolutionary theory is very specific about where variation and selection
manifest in biological evolution, we think cognitive scientists can and should be specific about
how variation and selection manifest in cognition. Moreover, just as biological evolution is
characterized by its unpredictability, incrementality, and path dependence, we think that cog-
nitive scientists should consider adopting the idea that the mechanisms of concept change: (1)
Rely to some extent on random variation, yet (2) Put tight constraints on what new concepts
are within reach of a cognizer at any moment. Several extant algorithms for nonparametric
approximation to probabilistic inference provide candidate evolutionary mechanisms in the
sense that they work by mirroring established mechanisms of biological evolution. We will
suggest that taking an evolutionary view of the role and limitations of these mechanisms
helps defuse persistent tensions in the learning and decision-making literature, for example,
providing a parsimonious explanation for why we exhibit anchoring, probability matching,
and confirmation bias.

To develop this argument, we first sketch some of the ways that blind variation and selective
retention operate in biological evolution. We then relate these to a “learning as program induc-
tion” framework (Bramley & Xu, 2023; Chater & Oaksford, 2013; Goodman, Tenenbaum,
Feldman, & Griffiths, 2008; Piantadosi, 2021; Rule, Tenenbaum, & Piantadosi, 2020; Ullman,
Goodman, & Tenenbaum, 2012; Zhao, Bramley, & Lucas, 2022; Zhao, Lucas, & Bramley,
2022, 2023). We argue this framework captures the latent possibility space and the mecha-
nisms needed for concepts to evolve locally and incrementally within an individual mind. We
discuss algorithms developed for program induction and relate them to evolutionary principles
of blind variation and selection. In particular, we highlight how tree-mutating Markov Chain
Monte Carlo methods can capture how a cognizer can tinker with and improve on their cur-
rent model by generating random hypothetical mutations and selectively retaining them. We
then discuss how integrating combinatory logic with conceptual bootstrapping in an Adaptor
Grammar scheme can additionally capture how a cognizer’s repertoire of future mutations or
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conceptual moves can grow alongside their concepts, through the selective caching of promis-
ing conceptual fragments. We will also argue that this kind of framework offers insight about
the origin of hierarchical structure and abstraction in our conceptual systems. We draw a soft
analogy between these algorithms and familiar mechanisms of biological evolution and con-
clude by suggesting that they capture something fundamental about how minds operate that is
not obvious from the perspective of the computational-level theories they are more normally
used to approximate.

3. Established mechanisms of biological evolution

The now-standard explanation for the presence of complex functional forms in biology
is the operation of natural selection (Darwin, 1859/2004; Williams, 1966). Natural selection
combines a process of blind variation with a process of selective retention. Random genetic
mutations create variation in the pool of genes. The combination of genes that are more
successful at spreading themselves through the population (typically by conferring advan-
tages to the organism, but sometimes disadvantages) are then selectively retained through
the greater survival and reproduction prospects of organisms containing that combination
(Dawkins, 1976). Unfolding over many generations, this process “designs” organisms that
are good at replicating their genes by solving the adaptive challenges in their environmental
niche (Williams, 1966).

The process of evolution by natural selection is “blind” in the sense that it cannot plan
ahead (Dawkins, 1986). Genetic mutation is random: It is not biased toward new genetic
variants that are systematically better. Selection then favors the genetic variants that turn out
better at contributing to their own replication, but it cannot anticipate whether a given variant
might eventually be useful at a later stage of evolution. For example, the early ancestor of
the eye was probably a simple layer of photosensitive cells that could detect the direction of
the light. This simple design was successful because it increased the reproductive success of
the organism, not because evolution could anticipate that fully realized eyes would be useful
millions of years later (Dawkins, 1986; Dennett, 1995; Jacob, 1977).

Evolution by natural selection is a process of optimization by local search—in the sense that
nearby possibilities are evaluated and the more successful ones adopted leading to a tendency
to climb “uphill” in fitness space (J. O. Campbell, 2016). In principle, a swathe of mutations
could align in a single generation and directly create a new “good trick” or even a completely
different organism. However, this is possible only in the same sense that a monkey hitting
5 million random keys on a typewriter could reproduce the complete works of Shakespeare
(Borges, 1941/1998). In practice, biologically successful arrangements of matter as complex
and structured as humans are astronomically unlikely to arise from random coincidence: One
would not expect anything interesting to come from arbitrarily arranging the 7 octillion atoms
that make up a human body. Once a nontrivial organism has evolved, the larger the random
leap it takes from its working design, the greater the chance that it will land on something
catastrophically worse. For this reason, as far as we know, all of the complex forms we actu-
ally encounter in biology are those that were able to evolve through a long series of tiny
incremental changes, that each improved, or at least did not substantially harm, the fitness of
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Fig. 1. (a) Caricature of biological evolution as a long local search via random mutation (green arrows) and selec-
tion (gray boxes) starting from a basic replicator, skulls indicate unsuccessful variations. (b) A minimal universal
concept generator and three possible proto-concept products. (c) Tree regrowth/surgery within established concept
as a mechanisms of incremental mutation. See Fig. 3 for worked example. (d) Bootstrapping through selective
caching of promising concepts for reuse in future concepts. See Fig. 4 for worked example.

the organism (Carroll, 2005; Dawkins, 1986; Jacob, 1977). For such changes to accumulate
into a highly complex functional form, the units of selection (in the context of evolution, the
genes) have to persist long enough (via reproduction on the level of the organism), or copy
themselves accurately enough, that the successful changes can outcompete the other less suc-
cessful ones before the units either (1) die out or (2) mutate so much that whatever made them
“fit” to the current environment gets lost (Dawkins, 1982). Fig. 1a sketches this idea.

3.1. Learning to learn as accumulating fitness

In extending this to the evolution of ideas, the analogy has been made, including famously
by Dawkins (1976) in coining the term “meme” as a conceptual-analog of the basic unit of
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selection.2 However, it is less obvious that the analogy is widely accepted in mainstream
psychology. Neuronal pruning in early development has been characterized as conforming to
principles of “neural Darwinism” in which connections compete and better combinations sur-
vive (Changeux, 1997; Edelman, 1993; Stanley & Miikkulainen, 2002). But when it comes to
individual higher-level cognition, we habitually think of minds as doing something far clev-
erer, with more goal-directedness and foresight, than the random walk of evolution. Indeed,
they can do this too. The brain is often described as a kind of prediction machine (Agrawal,
Gans, & Goldfarb, 2018; Clark, 2015), inductively forming models that supercharge learn-
ing and performance in familiar contexts (Kemp, Goodman, & Tenenbaum, 2010). Much of
effort in machine learning in recent decades has been spent in developing systems that bet-
ter synthesize humans’ domain flexibility and data efficiency, by instilling kinds of inductive
biases, or established “good tricks” found in human cognition (Lake, Ullman, Tenenbaum, &
Gershman, 2017).

On these lines, it seems clear that in any familiar domain, earlier evolution or earlier learn-
ing will have fine-tuned the parameters of the search function (both cognitive and environ-
mental), so that possibilities will come to mind that are, at least in the cognizers’s Environ-
ment of Evolutionary Adaptedness (EEA; Bowlby, 1969; Tooby & Cosmides, 1990), better
than strictly random ones. For instance, a child constructing an understanding of the physi-
cal world may take search steps that are somewhat stochastic, but that are also biased by a
pre-existing scaffolding built by natural selection (Spelke & Kinzler, 2007). A child might
be predisposed to act on their environment in ways that are generally effective at revealing
its specific causal structure (Bramley, Jones, Gureckis, & Ruggeri, 2022) and latent physi-
cal properties (Bramley & Ruggeri, 2022), provided that these predispositions reflect fairly
stable properties of their EEA. In general, the cognitive science literature has made a great
deal of the idea that we can and do learn to learn (Kemp, Goodman, & Tenenbaum, 2010;
Lake, Ullman, Tenenbaum, & Gershman, 2017). That is, we accumulate inductive biases and
intuitive theories that get us going quickly in familiar domains (Gerstenberg & Tenenbaum,
2017). However, the success of this strategy depends on our continuing to live in, or close
to, the EEA that the approaches were shaped by. The no free lunch theorem captures the fact
that, were these environmental properties and relationships to reverse tomorrow, our inductive
biases would only lead us away from what we need (Wolpert & Macready, 1997). For present
purposes, we also note that learning to learn necessitates first discovering the good ideas or
clever tricks we want to reuse when revisiting familiar settings.

3.2. Conceptual systems as generative models

In recent decades, the Bayesian, free energy, and deep learning traditions have converged
on a characterization of the structure of a mature human conceptual system. Roughly, minds
are thought to encode a hierarchical causal generative model of their environment (Griffiths
& Tenenbaum, 2009; Hohwy, 2013; Kemp, Goodman, & Tenenbaum, 2010; Lucas & Grif-
fiths, 2010; Tenenbaum, Griffiths, & Kemp, 2006). One can think of this as a cascading con-
stellation of interconnected concepts from very general or abstract ones, such as “cause”
and “belief” at the top, to highly domain-specific ones like “carburetor,” “voter,” or “dax.”
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To be of practical utility, the whole collection needs to act as model of the world: com-
pressed, yet sufficiently causally accurate, predictive, and flexible to enable prediction and
planning (Conant & Ross Ashby, 1970; Hohwy, 2013). It turns out that a generative hierarchy
of causally structured representations, from our most general and universal beliefs to the most
specific concepts, fits this bill better than any other structure we know of.3

This kind of characterization has helped demystify the things minds do very well, such
as perform few-shot inferences (Gerstenberg & Tenenbaum, 2017; Griffiths & Tenenbaum,
2009; Kemp, Goodman, & Tenenbaum, 2010; Zhao, Lucas, & Bramley, 2022), make the kinds
of uncertainty-sensitive inferences that early Artificial Intelligence struggled with (Clark,
2015; Oaksford & Chater, 2007), and learn proactively by using subjective uncertainty to
guide what (inner) hypotheses we want to consider or investigate next, what action to take to
resolve where we are and what is happening, and so on (Bramley, Lagnado, & Speekenbrink,
2015; Gureckis & Markant, 2012; Nelson, 2005). Most relevant for the current discussion,
the generative model framework also seems to capture an important sense in which the mind
seems set up to produce stochastic variation and novelty of the sort that could allow for evo-
lutionary mechanisms. We can use a generative world model in a top-down way, to sample
conditional possibilities for use in inferences (Chater et al., 2020), but also to explore possi-
bilities unconstrained by evidence as we do when we dream or hallucinate (Fletcher & Frith,
2009). Having a generative model seems key to our ability to reconstruct past episodes from
a compressed memory trace (Hemmer & Steyvers, 2009), and to play out the counterfactuals
that guide responsibility judgments (Quillien & Lucas, 2023) and hypotheticals that guide
planning (Guez, Silver & Dayan, 2012). What is less clear is how the hierarchical constraints,
(in)dependencies, and structure of this inner state space can come about.

In the next sections, we unpack how the notion of learning as program induction, and
particularly, algorithms developed to perform it, provide traction on how conceptual novelty
and complexity arises within a mind.

3.3. Mental model building as program induction

We think that recent framings of concept learning as program induction provide a helpful
way to think about and formalize the problem of how conceptual structure arises from initially
simple mechanisms (e.g., Bramley, Schulz, Xu, & Tenenbaum, 2018; Buchanan, Tenenbaum,
& Sobel, 2010; Chater et al., 2020; Dehaene, Al Roumi, Lakretz, Planton, & Sablé-Meyer,
2022; Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Lake, Salakhutdinov, & Tenen-
baum, 2015; Piantadosi, Tenenbaum, & Goodman, 2016; Rule, Schulz, Piantadosi, & Tenen-
baum, 2018; Ullman, Goodman, & Tenenbaum, 2012). Building on ideas from computer
science ideas, including inductive programming and program synthesis, program induction
methods attempt to automatically generate computer programs to perform tasks, solve prob-
lems, or fit data (Church, 1963).

Consider the first time you interact with a new class of objects, and need to learn their
properties. Based on stimuli from Zhao, Lucas, and Bramley (2023), Fig. 2a illustrates such a
situation with “magic eggs” that can change the length (number of segments) of “sticks” they
touch. Your task is to discover the rule that governs the magic eggs’ power on the sticks. This

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12703 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. R. Bramley et al. / Topics in Cognitive Science 00 (2023) 9

Fig. 2. (a) A causal concept induction scenario. (b) Illustrative PCFG covering a space of possible causal rules.
Starting from T0, one follows arrows at random recursively replacing any nonterminal placeholders (T0 . . . T4) at
the arrow’s source with the content at the arrow’s target. (c) Example of generating a concept directly from the
prior (consistent with d only through blind luck). Each line replaces the nonterminal Tn with one of its possible
productions with the fractions tracking the probability of each. (d) Six data points.

rule can be seen as a simple “program” that takes as input the properties of an egg and stick
and returns a new stick length as output. This simple toy example illustrates an important
challenge of learning in most novel situations: The space of possible hypotheses is infinite.
This is because one could potentially write an infinite number of programs governing how the
magic eggs work, for instance, all the following programs are compatible with the observation
in Fig. 2a:

- the resulting stick length is always one (in pseudo-code: sticks′ ← 1),
- the resulting stick length is randomly generated (sticks′ ← rand(0, 10)),
- sticks′ ← sticks− spots,
- sticks′ ← sticks× stripes− spots,
- and so on.
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The challenge of program induction is to solve this problem in a tractable way, despite the
infinity of potential theories that could explain the data. To do this, program induction works
through first defining a kind of meta-program that generates new candidate programs, and a
mechanism for searching over these generated programs for those that perform better under a
criterion of interest (Summers, 1977).

Under a program induction account of concept learning, a cognizer begins with some set
of primitive operations and some mechanism that combines these operations recursively and
stochastically until a termination condition is reached. This basic mechanism lays the ground-
work, or sets up the space and process that allows for the creation of all sort of “programs” or
concepts.4

Crucially, anything that can be expressed in the language defined by the primitives, can
be generated by the recursive application of such a construction mechanism. This means
that there is a basic sense in which everything a program induction mechanism is capable
of producing is baked in (Perfors, 2012). Fortunately, even extremely simple computational
systems can be highly expressive, such that many can be used to represent and execute any
program (Turing et al., 1936). This is because computation unlocks the ability to exploit sys-
tematicity and compositionality (Fodor & Pylyshyn, 1988), the same principles that allow
the speaker of any natural language to use that language to say more or less anything they
like, even if it has never been said before (Chomsky, 1959).5 Just as biological forms, we
see today were all merely potential arrangements of physical matter long before they became
actual products of evolution, all that needs to be built in is a mechanism that has the potential
to arrive at these programs. Indeed, a variable-free combinatory logic made up of just two
terms is Turing complete (Schönfinkel, 1924). Piantadosi (2021) notes that the operations
described by these terms are also straightforward to instantiate neurally, making some small
set of primitive combinatory logic operations an adequate basis in principle for the emer-
gence of a conceptual system that includes carburetors and string theory among its potential
products.

To formalize program induction, it is common to use Probabilistic Context Free Gram-
mars (PCFGs, Ginsburg, 1966) from linguistics. A PCFG is a set of rules, primitives, and
production probabilities defining a language (natural or artificial, e.g., programming) such
that, if applied iteratively and recursively, the rules can result in any grammatical statement
in that language, and assign that statement a probability. Fig. 2a gives an illustrative example
of a PCFG imbued with a small set of primitives that allow it to produce concepts about a
causal rule that governs an interaction between two abstract objects (Zhao, Lucas, & Bram-
ley, 2023): An agent—a “magic egg” with two quantitative features (spots and stripes)—and
a recipient—a “stick” with a single feature, a length, in segments (Fig. 2b).

Fig. 2c illustrates a sequence of rule applications, here resulting in a concept that is (coin-
cidentally) consistent with the examples in Fig. 2d: “The interaction causes the stick’s seg-
ments to be multiplied by egg’s stripes before segments equal to the egg’s spots are subtracted
from the stick.” All other things being equal, a PCFG favors concepts composed with fewer
rule applications, implying an inductive bias favoring simpler concepts over more compli-
cated ones.
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3.4. Monkeys and typewriters

PCFGs have been used in cognitive science in part as a model class for defining priors
with support over an infinite space of possibilities (Goodman, Tenenbaum, Feldman, & Grif-
fiths, 2008; Piantadosi, Tenenbaum, & Goodman, 2016; Rule, Schulz, Piantadosi, & Tenen-
baum, 2018). That is, we can think of a PCFG over a Turing-complete language as expressive
enough to ground a computational-level characterization of the grand nonparametric infer-
ence problem cognizers face in inducing a good model of the world (Marr, 1982). However,
infinite hypothesis spaces come with implications for engineering mechanisms that approx-
imate inference, since it is impossible to consider more than a tiny fraction of the space. A
naive approach is to generate a large set of theories from a prior defined by a PCFG and weight
these with a likelihood (i.e., fitness) function, so that the weighted sample acts as an approxi-
mation to the posterior over concepts given evidence. Unfortunately, this runs straight into the
“monkeys and typewriters” problem we described earlier in relation to biological evolution
(Borges, 1941/1998). All concepts or programs can in principle be generated directly from
such a universal prior, but in practice, the probability of this happening for complex concepts
is negligible. As an illustration of this, in the toy scenario illustrated in Fig. 2a, assuming a
uniform probability of taking each branching path, outputting the concept that in fact governs
the causal effect responsible for the six learning examples, has a probability of 1

31,104 , meaning
one would need to generate many thousands of prior samples to have a good chance of discov-
ering it. Worse, even for this toy scenario, this PCFG is too simple. When participants were
tested on this example by Zhao, Lucas, and Bramley (2023), many reported rules includ-
ing “and”s, “or”s and conditional “if/then” statements. Enriching a PCFG such that it can
also generate these guesses, for example, including Booleans primitives to allow for anything
in first-order logic, the chance of generating even this simple ground truth becomes astro-
nomically small. Fortunately, this computational challenge has driven the program induction
research community to develop other tricks for efficiently exploring the state space of models.
We highlight two such approaches and explain how both rely on incremental blind mutation
and selective retention. We argue this helps explain how conceptual complexity can grow and
evolve gradually within a cognizer’s mind.

4. Algorithms for program induction

4.1. Stochastic local search

Markov Chain Monte Carlo (MCMC) methods are a widely used statistical approach for
the systematic exploration of intractable state spaces (Brooks, 1998). They produce chains of
samples, or hypotheses, that have equilibria approximating a distribution of interest, such as
a posterior that cannot be computed directly. One reason MCMC methods are an interesting
approach for our purposes is they describe a principled stochastic local search over possibil-
ities typically for use within spaces where direct optimization is impossible (Suchow, Bour-
gin, & Griffiths, 2017). Moreover, they achieve this via the same ingredients we have argued
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12 N. R. Bramley et al. / Topics in Cognitive Science 00 (2023)

are central to biological evolution: sequences of simple random variations combined with
forces of selection. For example, in the Metropolis-Hastings MCMC algorithm (Metropo-
lis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953), blind variation comes from the pro-
posal function. This can be a range of modifications of the current hypothesis but typically
selected to be something easy to generate, and neither too large—as to depart completely
from the current hypothesis—or too small—as to make the chain practically static. Selec-
tion is then achieved through an acceptance function, that stochastically accepts or rejects a
modified hypothesis depending on its fitness relative to the current hypothesis. When a rel-
atively better hypothesis is encountered, such a mechanism tends to accept and then retain
it for longer because most subsequently proposed mutations will be rejected. When a bad
hypothesis is adopted, the process will tend to depart from it quickly because most proposed
mutations will be accepted. Provided the proposal function makes all parts of the space acces-
sible, and the acceptance function is based on both prior (i.e., complexity) of the hypothesis
and its likelihood (i.e., fit to purpose), then the resulting chain of hypotheses will eventu-
ally visit every possibility with a frequency proportional to its posterior probability. If one
instead always accepted the better hypothesis, the sequence of hypotheses would tend to
improve quickly but then get stuck in a local optimum where all local proposals are worse.
If one instead randomly chose whether to accept each hypothesis, then the algorithm would
simply walk from one hypothesis to another without favoring those that fit better. MCMC
thus occupies a sweet spot in the space of stochastic search algorithms between two mal-
adaptive extremes: A level of randomness that allows a cognizer to explore concept space
without ever getting completely stuck, but also to favor the parts of the space with higher
fitness.

Many recent Bayesian models have used MCMC to make human-level and human-like
inferences in a variety of concept learning settings (e.g., Goodman, Tenenbaum, Feldman, &
Griffiths, 2008; Lake, Salakhutdinov, & Tenenbaum, 2015; Piantadosi, Tenenbaum, & Good-
man, 2016; Thaker, Tenenbaum, & Gershman, 2017). In these models—and in most appli-
cations of MCMC in the cognitive sciences—MCMC is used as a tool to approximate true
or optimal posterior distributions, typically in service of a computational-level theory, and
typically compared with group-level behavioral data; it is not offered as a specific process-
level claim about how individual participants navigate the inferences in question, as we do
here. However, the idea that MCMC-like mechanisms describe the workings of the mind
itself has also been suggested (Abbott, Austerweil, & Griffiths, 2015; Bramley, Dayan, Grif-
fiths, & Lagnado, 2017; Castillo, León-Villagrá, Chater & Sanborn, 2023; Dasgupta, Schulz,
& Gershman, 2017; Lieder, Griffiths, M. Huys, & Goodman, 2018; Sanborn, Griffiths, &
Navarro, 2010). For instance, Dasgupta, Schulz, and Gershman (2017) use MCMC to explain
a variety of response biases in conditional probability judgments, such as “what is the prob-
ability that an image containing a table also contains a [chair/computer/curtain].” Lieder,
Griffiths, M. Huys, and Goodman (2018) similarly propose cognizers adjust quantitative esti-
mates (e.g., about the arrival time of a bus) away from an arbitrary initial seed or anchor
via MCMC. Ullman, Stuhlmüller, Goodman, and Tenenbaum (2018) propose people adjust
an initial summary-statistic-derived estimate of physical parameters through a short MCMC
chain over parametrizations within an intuitive theory of physics. Castillo, León-Villagrá,
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Fig. 3. Illustration of Tree Regrowth MCMC and Tree Surgery MCMC. Gray arrows represent the proposal of new
trees by blind variation; green arrows represent selection. Learner starts with hypothesis h, proposes a modification
by randomly selecting and regrowing the bottom left branch (an example of Tree Regrowth). This is rejected,
making h′ the same as h. Learner then surgically replaces “+” with “–” (Tree Surgery). This improves fitness, so
is accepted, arriving at the target concept.

Chater, and Sanborn (2023) explain biases in random number generation as stemming from
limited local search with momentum. Davis and Rehder (2020) explain biases in causal
model-based judgments as resulting from limited exploration of the state space of those causal
models anchored on their most characteristic canonical states. Bramley, Dayan, Griffiths, and
Lagnado (2017) explain sequential dependence in people’s causal structure judgments across
learning instances as resulting from people randomly mutating their causal models through
short MCMC-like chains to search for alterations that accommodate new evidence. Fränken,
Theodoropoulos, and Bramley (2022) apply the idea to a Boolean concept learning task some-
what similar to Fig. 2a, contrasting process models based on several stochastic search propos-
als to explain autocorrelations in guesses that people make.

Focusing on how MCMC can be applied to compositional symbolic spaces such as those
defined by a PCFG prior, one well-established proposal distribution is “tree-regrowth” (Good-
man, Tenenbaum, Feldman, & Griffiths, 2008), which represents a concept as a tree-like struc-
ture where each node is a function taking arguments from the leaves below it and passing the
result to the branch above (e.g., Fig. 2c). Randomly deleting a node and everything beneath
it, and replacing it with the nonterminal that produced it, leaves a concept with a “gap” that
needs to be filled. The gap is filled by using the PCFG to eliminate this and any newly created
nonterminals, and arrive at a new proposal (see Fig. 3). We imagine the learner starts by enter-
taining the possibility that the stick grows through multiplication by the egg’s spots followed
by addition of its stripes. They randomly select the “×” node of the concept tree, delete it,
and regrow a new subtree until termination using their PCFG. Fränken, Theodoropoulos, and
Bramley (2022) use short MCMC chains of these kinds of tree regrowth proposals as a candi-
date process model explaining how learners go from one guess to another as they reason about
a geometric Boolean concept. However, they find human patterns of sequential dependence
between participants’ guesses to be both different and stronger than those predicted by tree
regrowth. For example, participants often made changes to “upstream” nodes of a concept
without also making downstream changes. Indeed, the first hypothetical mutation results in a
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14 N. R. Bramley et al. / Topics in Cognitive Science 00 (2023)

candidate concept—that the stick will grow or shrink to be of length 3 minus the spots, plus
the stripes—that is almost completely different from the previous one, as well as being a poor
characterization of the data in Fig. 3b, so is not selected.

To travel from their starting hypothesis to the correct hypothesis, the “+” at the root of
the tree needs to change into a “–” without disturbing the rest of the concept. To allow for
this kind of conceptual move, Fränken, Theodoropoulos, and Bramley (2022) propose a more
conservative proposal distribution they call “Tree Surgery.” This involves a handcrafted local-
ist proposal mechanism that randomly replaces, adds, removes, or splices in one new node at
a time. They found that short MCMC chains based on this proposal distribution did a better
job of capturing participants’ conceptual revisions than Tree Regrowth and several heuristic
search mechanisms. Illustrating this, we show a surgical mutation in Fig. 3c which improves
the quality of the hypothesis and so is accepted.

Across these examples, the key signature of MCMC-based process models that distin-
guishes them from the normative models they approximate, is their sequential dependence,
producing patterns of autocorrelation and anchoring in a single cognizer’s ideas over time.
For Dasgupta, Schulz, and Gershman (2017) and Lieder, Griffiths, M. Huys, and Goodman
(2018), this explains participants’ dependence on context and prompts, while for Bramley,
Dayan, Griffiths, and Lagnado (2017) and Fränken, Theodoropoulos, and Bramley (2022), it
is on the learners’ own earlier-reported belief. This is because a short chain of MCMC steps
will tend to remain close to where it began. Autocorrelation order-effects are so ubiquitous
in psychology experiments that we take pains to average them out of data collection through
counterbalancing and statistical averaging. Conceptually, we should expect this autocorrela-
tion to increase as we scale this idea and these results up from toy experimental scenarios
to the larger problem of adjusting one’s global beliefs about the world. That is, if we imag-
ine a cognizer’s entire ontology, or world view, as a very large connected, tree-like graph,
then the entire model is a point within an infinite latent possibility space of possible world-
views and the idea they could generate a completely independent alternative is tantamount to
restructuring their entire cortex. In addition to being practically infeasible, this leads us back
to the monkeys and typewriters issue, namely that a complex random proposal has a negligi-
ble chance of having good fitness. Consequently, the idea that mature cognizers are limited
to much smaller, more local, and incremental modifications seems inevitable. Elsewhere, we
have argued that this is related to the “antifoundationalism” captured by the Duhem–Quine
thesis and the metaphor of Neurath’s ship (Bramley, Dayan, Griffiths, & Lagnado, 2017;
Duhem, 1954; Quine, 1969). The Duhem–Quine thesis posits that no scientific hypothesis
stands or falls in isolation because any attempt to test it will depend on auxiliary hypotheses
and assumptions. In a similar way, it seems like almost any theory revision in the mind of an
adult is bound to be conditional on the wider network of beliefs in which the revised element
is embedded, for example, that their senses are working as expected (Gershman, 2019a). The
antifoundationalist consequence of this view is captured in the Neurath’s ship idea: Theory
change is rather like patching a ship while at sea, with each change depending always on the
current global hypotheses (the rest of the ship’s hull) for support, without the privilege of
foundation on which to disassemble and rebuild the entire model (as one could in a shipyard
or dry dock).
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4.1.1. Supercharging local search
We have so far suggested that MCMC-like stochastic search over a PCFG-defined concept

space gives some traction on the puzzle of how minds might incrementally grow and adapt
their inner theories and world models. However, the PCFG seems too simple a mechanism to
capture gamut of human concept change. The analogy of concept change as MCMC over a
PCFG is limited by classical MCMC mechanisms’ inability to compress data, as well as the
PCFG model class’s fundamental lack of modularity.

4.1.1.1. (Lack of) compression: An MCMC-PCFG chain describes a walk around con-
cept space that is designed to have a specific stationary distribution. Treated as a model of
inference, it does not predict that cognizers will spontaneously progress from simpler to
more complex concepts, except by accumulation and evaluation of more data over time. An
MCMC chain, by design, has no memory for what other ideas it has landed on in the past
beyond whatever hypothesis is currently in place.6 As more evidence arrives, this will affect
the search steps such that ability to explain the data increasingly outweighs the prior pref-
erence for simplicity (Howson & Urbach, 2006), licensing increasingly complex models be
accepted by mutations. However, this requires storing and evaluating ever more data. This is
clearly unworkable as an account of life-long learning, where a key role of representations is
to absorb data so it can be forgotten.

4.1.1.2. (Lack of) modularity: PCFGs allow for a limited form of learning. One can learn
production probabilities from data, for example, by introducing a Dirichlet prior over the
possible expansions of a particular symbol in the grammar. For instance, if in our previous
example “+” has featured in more successful concepts in the past than “×,” we can infer
that the probability of producing “+” should be higher than “×” when generating or mutat-
ing concepts henceforth (Fig. 2). However, the fact that production probabilities in PCFG
are independent of context mean the scheme cannot learn how to better combine concepts.
If learner is fortunate enough to land on a powerful concept or “good trick”—that is, some
clever composition of their primitives—under a PCFG-MCMC scheme, the combination is
only retained as long as it continues to feature in their hypothesis, that is, survives subsequent
random mutations. Under a Tree Regrowth proposal function, for example, half of a learner’s
concept tree is regrown on average with every mutation, meaning that nontrivial discover-
ies will tend to be obliterated by subsequent mutation. This is illustrated by the example in
Fig. 3a. The learner starts their search syntactically close to the target concept. That is, they
have already generated a key piece of the target concept in identifying the multiplicative rela-
tionship between the stripes and segments. However, because the discrepancy between their
hypothesis and the target is near the root (where they have a “+” instead of a “–”), they can-
not modify their hypothesis and arrive at the target concept without also “rediscovering” the
lower branches by generating them anew from the prior. Tree Surgery mitigates this problem
being much more conservative in its mutations, but does not eliminate it.

This illustrates a fundamental limitation of a PCFG-based model of inference. It implies
the learner is forever stuck drawing on their original set of primitives. If the cognizer’s expe-
rience suggest the same complex concept applies in several situations, that concept must be
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rediscovered each time. But reuse of useful fragments is fundamental to the evolution of both
biological forms and thought. Biological evolution often innovates by making variations on
the same underlying motif: we have 10 fingers, but did not have to independently evolve each
of them from scratch 10 different times (Carroll, 2005). The ability to repurpose tricks whole-
sale seems to be quite important for human cognition. Indeed, to a first approximation, this is
what it means to reason by analogy (Gentner, 1983; Holyoak & Thagard, 1996). Therefore,
a key part of characterizing a conceptual evolution seems to be explaining how we can reuse
discovered structure. This is where the idea of bootstrapping a library of concepts and the
formalism of adaptor grammars comes into play.

4.2. Bootstrapping

Bootstrapping—the paradoxical notion of “lifting yourself up by your bootstraps”—
classically refers to transformative learning where the “the endpoint of the process transcends
in some qualitative way the starting point” (Carey, 2004, p. 59). In statistical practice, it has
acquired a more specific meaning, referring to inference techniques where a model’s out-
put is fed back into the model as part of a training or inference loop. By using a genera-
tive model capable of storing and reusing its past ideas, we can reify the statistical principle
of bootstrapping and apply it to concepts. This requires using a representational framework
that overcomes the limitations of standard PCFGs. One recent approach that achieves this is
the adaptor grammar formalism (Johnson, Griffiths, & Goldwater, 2006; P. Liang, Jordan, &
Klein, 2010; Zhao, Lucas, & Bramley, 2023).

A helpful analogy for thinking about how an adaptor grammar works is learning to pro-
gram (Rule, Tenenbaum, & Piantadosi, 2020). A novice coder might only know a few very
basic functions and initially find that coding anything interesting becomes repetitive, tedious,
and error prone. But as they become a more proficient coder, they will learn to store use-
ful chunks of code as reusable functions that take, and return particular types of variables
(and(x,y) combines two Booleans into a third Boolean, greater(x,y) combines two inte-
gers into a Boolean, etc.). As a basic example, if you frequently need to compute averages,
it would be more efficient to define a “mean” function where, for example, mean(x) =
sum(x)/length(x) and call this time each time a mean is needed rather than writing out
the operation over and over again. In general, the history of programming language develop-
ment has this character. Modern languages like python and R provide large libraries of pow-
erful functions and abstractions that compile down to lower-level programming languages,
bottoming out in a binary machine code.

In order to enable modularity in a program induction framework, we need a formalization
that maintains some separation between structure and functional form. Combinatory logic
(Schönfinkel, 1924) provides this by using a system of terms and types to combine func-
tions. Router terms govern how values flow through the computational tree structure. This
removes the need to keep track of variables and so makes it far easier to glue programs and
subprograms together. In combinatory logic, each variable comes with its type—for exam-
ple, int , obj, bool—and for each functional term, we write its types in the order of arguments
and then outputs, such that greater(x,y) has “type signature” int → int → bool . In our

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12703 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. R. Bramley et al. / Topics in Cognitive Science 00 (2023) 17

Fig. 4. (a) Expressing a modular variable-free concept using routers: i–iv The four routers. v. Worked example
where red solid arrows indicate where the egg is passed and teal dashed arrows indicate where the stick is passed.
(b) Adaptor grammar: Learner recursively samples i. Routers (creating new branches and determining inner struc-
ture of concept) and ii. type signatures for each leaf governing the permitted routed arguments, then base terms
either primitive (iii.) or cached (iv.), terminating when no branches remain. (c) Illustration of how complete pro-
grams can be selectively added to the cache and subsequently be selected as base terms.

illustration, we use several primitive functions and four router terms B, C, S, I for expres-
sive convenience, but they can be redescribed as combinations of just two base terms S, K
(Schönfinkel, 1924), see Fig. 4a and Zhao, Lucas, and Bramley (2023) for details. To parse
the program depicted in Fig. 4a, the egg object is passed in first and routed right by B (the
first router at the root of the tree), then to both sides by S ultimately being fed to the getSpot
and getStripe primitive functions at the right-hand leaves. Meanwhile, the stick is passed in
second, so routed left by the C at the root, right by the B below, and then to the leftmost
leaf by I. The complete expression thus sets the stick’s segments to a length determined by
the egg’s stripes minus its spots. With this framework in place, modular mutation and reuse
becomes straightforward. For example, the getSpot leaf can be replaced by any term that reads
an object as input and returns an integer as output, thanks to routers and type-constraints. A
Tree Surgery type search scheme is thus perfectly feasible here as well.

With the notion of routers and types in hand, we can now think about how to use AG to gen-
erate and cache concepts. The process begins with the target definition type (Fig. 4b): What
kind of input will the program get and what kind of answer does the program being generated
need to return? This is represented by the routers at the root of the tree. In our example, we are
searching for a program that takes the two objects (egg and stick) as input, and returns a stick
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(with potentially a different number of segments) as output. With setSegmentob j→int→ob j on
the left-hand side of the tree, the right-hand side subtree provides an integer that setSegment
uses to alter the length of the stick in ways that hopefully also explain the evidence. The pro-
cess proceeds by recursively growing out the leaves of the tree either by sampling a router
(creating more leaves), or a type-appropriate base term, until all leaves are filled with base
terms. When complete, the expression will have routers all internal nodes and base terms at
all leaves. Crucially, whenever AG finishes growing a concept, it can cache it under its type
signature, and add it to the library of base terms that it will draw on in future (Fig. 4c). The
next time the learner goes to make an inference, their prior ideas are now included in their
library of primitives they can draw on, making it straightforward to reuse previous conclu-
sions wholesale in a new expression without reinventing them each time. Whenever a concept
is cached that is already in the learner’s library, we can either think of the library as contain-
ing several copies of that term, or more succinctly as increasing the selection weight on that
term. Free parameters can also govern the degree of reuse of cached rather than primitive base
terms, as well as governing the balance between growing branches with new routers or ter-
minating them with base terms, similarly to the weights in a PCFG. To prevent such a library
from growing unboundedly, one can implement storage limits such that cached terms that do
not prove useful eventually fall out of the library and are forgotten. While the original use
case of AG was to learn a model of the sharing and reuse of substructures in language, here
we repurpose AG’s cache-and-reuse mechanism to formalize the idea of bootstrap learning.

Returning to our running example, consider the evidence in Fig. 2d. Even though this is a
toy problem, it is challenging to find a hypothesis that fits all of these examples. However, if
you focus first on examples 4–6 where there are no spots, it is relatively easier to come up
with an partial explanation: For example, perhaps the stick’s segments get multiplied by the
egg’s stripes. If one infers this and caches it, then proceeds to reason about all six examples,
you can now reuse the cached insight as a new int → int → int primitive, and so more easily
discover the intended concept which requires this fragment to be nested within the subtraction
of the egg’s spots (Fig. 4d).

Zhao, Lucas, and Bramley (2023) ran a series of experiments in which participants had
to make judgments about causal concepts like these based on evidence like that shown here
presented in different sequences. In one condition, participants were shown examples 1–3
(where the eggs have both stripes and spots) and asked to make a guess, before being shown
items 4–6 and being asked to make a revised guess explaining all the evidence. In this con-
dition, generalization accuracy was close to chance and no participant described exactly the
intended concept. Participants rather tended to describe complex and poorly fitting concepts.
For example, several participants proposed that perhaps: “dots remove segments, stripes add
segments, excepting when there is just one stripe, in which case nothing changes” (explaining
four of the six examples). Zhao et al. show that this pattern is to be expected under the model
we sketch above, if we assume that learners cached whatever they had inferred from reason-
ing about just the first three items, and attempted to generate a concept that could capture all
six items. A separate group of participants were shown items 4–6 first before being shown
items 1–3. Strikingly, almost half of the participants were then able to go on to guess the
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intended concept correctly and generalization accuracy (guesses about what would happen
under different egg–stick combinations) doubled from 22% to 45%.

Crucially, an AG learner carries a growing library of interconnected concepts rather than
only carrying forward just a singular current belief, as in the PCFG-MCMC scheme. This
makes their representation richer and so better able to absorb and retain insights from historic
data. The concepts in the library naturally have hierarchical relationships with one another,
with older concepts featuring deeper in the stack, as subcomponents of more recent con-
cepts. This naturally provides a route through which hierarchical structure can grow within
a mind. Of course, our mature conceptual systems are not just chronologically hierarchical.
They are hierarchical in ways that exploit the potential for compression via abstractions. That
is, more general features that are true of lots of concepts appear deeper in the hierarchy. For-
tunately, another strength of the combinatory-logic-plus-AG formalism is that it enables a
variation and selection mechanism for rearranging this hierarchy. The modular structure of
the concepts embedded in an AG library allows them to be “refactored” (P. Liang, Jordan,
& Klein, 2010). Roughly speaking, the leaves of the tree can be shuffled around along with
their routers, without altering the meaning of the whole expression but potentially increasing
the compression component of concept fitness. This allows yet another stochastic mechanism
of incremental search to improve on the happenstance of chronological concept construction
(cf. Felsenstein, 1974, for a similar role for sexual selection). In this way, subconcepts can be
collected together and recached in different arrangements, unlocking the ability to discover
and factor out powerful abstractions (Dechter, Malmaud, Adams, & Tenenbaum, 2013; Ellis
et al., 2021; Gershman, 2017; Tian, Ellis, Kryven, & Tenenbaum, 2020).

4.3. Summary

Putting MCMC and adaptor grammars notions together and foregrounding their relation-
ship with local blind evolutionary search, we arrive at a sketch of a concept learner with
multiple complementary mechanisms for generating hypothetical variation and selectively
retaining this variation. MCMC search describes “lateral” variation selected conditional on fit,
while bootstrapping captures a recursive variation of modules or chunks selectively retained
as reusable building blocks. The accumulation of more powerful, but directly reusable, chunks
as primitives captures how, as we develop, our reach can grow (in terms of the complexity of
the hypotheses we operate on and the changes we consider), even as our capacity for search
over potential mutations to our ideas might stay roughly constant. It is important to keep in
mind that neither local search nor bootstrapping magically solve the no-free lunch theorem.
There is no guarantee that fitter designs will be local to our current beliefs, nor that the con-
cepts one has cached during learning will turn out to be the right building blocks to build more
powerful concepts. In fact, if one caches the wrong concepts early during learning, this will
only make it harder to arrive at a good trick (Wolpert & Macready, 1997). We have argued in
this paper that this is a general feature of learned strategies, intuitive theories, and inductive
biases: They commit to a certain interpretation of reality that is always in danger of being
usurped. The inductive setting thus demands a fundamental flexibility in a cognizer that we
have equated with the functional use of localized randomness to serve blind mutative search
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over symbolic structure of inner models or theories. The path dependence in an individual’s
beliefs that results from this is evident in our richly developed and deeply ingrained core
beliefs and capabilities, packed with tricks for exploiting our environment but also constrain-
ing and localizing our new ideas to those that build on or around what we already believe.
This is demonstrated on a much smaller scale in our running example from Zhao, Lucas, and
Bramley (2023) experiments. Participants rarely generate the target concept in when viewing
evidence in the order it appears in Fig. 2d, instead getting tangled in complex disjunctive
hypotheses that make it harder to get the answer. When experiencing the same evidence in
reverse, almost half of the participants establish the necessary inner subconcept and then the
intended compound concept. The paper shows that not only these accuracy patterns but also
participants’ specific idiosyncratic mistaken ideas can be synthesized by the bootstrapped
search scheme we sketched here.

5. Discussion

In this paper, we engage with the question of how people develop new theories or models
of the world. The problem is puzzling because our concepts seem to live within an infinite
space of symbolic compositional possibilities that can never be fully explored. In line with
evolutionary theory, we suggest that sophisticated concepts can be reached via a simple mech-
anism of random, or “blind,” variation and selective retention. Furthermore, accounting for
the complexity of our mature world models demands a model that is able to accumulate these
variations incrementally, such that many small innovations can ratchet over development as
in biological evolution (Felsenstein, 1974). We described two algorithms from the program
induction literature that capture elements of how minds could achieve this. Specifically,
we highlighted MCMC-like local tree search over models, combined with bootstrapping to
“lock in” promising subconcepts for reuse. Generally, we argued that a consequence of the
evolutionary perspective is that, at the cutting edge of cognition, innovation is necessarily:
blind (D. T. Campbell, 1960), local (Bramley, Dayan, Griffiths, & Lagnado, 2017), and
path-dependent (Zhao, Lucas, & Bramley, 2023).

We now discuss three key challenges for fleshing out an evolutionary theory of cognition
and finally highlight what we see as three key implications of this perspective.

5.1. Three challenges

5.1.1. Defining fitness
We have argued that ideas from computer science and statistics (such as MCMC) provide

models of how the mind might build theories and concepts incrementally. Under these mod-
els, the fitness of a theory is its posterior probability: It is determined by the likelihood that
the theory assigns to the data, as well as the theory’s prior probability. However, the relation-
ship between the accuracy of one’s model and the fitness it conveys need not be one-to-one
(Sharot, 2011; Szollosi & Newell, 2020); moreover, the criteria the mind uses for selective
retention might easily depart from likelihoods and priors. To a first approximation, the fitness
of a discovered theory or model is related to how it helps the organism solve the adaptive chal-

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12703 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. R. Bramley et al. / Topics in Cognitive Science 00 (2023) 21

lenges of their environmental niche. For example, our concepts facilitate mental substitutes
for costly physical actions, such as substituting environmental exploration with model-based
planning (Ashby, 1952) and the various other forms of learning-to-learn we describe above.
Since we know good regulators should be accurate, this would seem to drive selection toward
models that are likely in the Bayesian sense of explaining the data. Intuitively, the other com-
ponent of concept of fitness is the complexity of the concepts that emerge, with more com-
plex theories simply being harder to generate, store, or use in downstream tasks (Chater &
Vitányi, 2003), lining up approximately with a “prior” preference for simplicity. Importantly,
the notion of “prior” complexity also evolves within an AG framework. When the system
caches a complex conceptual discovery, it can later use it directly, creating a ratchet effect
whereby progressively more sophisticated conceptual constructs become easily available via
the same small local mutation steps.

5.1.2. Whither optimality?
A consequence of evolutionary accounts is the implication that the relationship between

one’s current belief system—both bits that are built in and bits that are learned— and the
unknowable ideal generative model or ground truth is always going to be an “unknown
unknown” (Knight, 1921). Just as we cannot imagine what the optimal organism would look
like, we cannot imagine, claim to already possess or already have a model of, an optimal
mind. If we did, we could simply build or adopt it.

The algorithms we highlighted come from probabilistic modeling in machine learning.
This seems to cohere with the idea that the brain could be seen as a kind of generic Bayesian
sampler (Chater et al., 2020). That is a slightly stronger claim than we are making here. The
idea that minds induce novelty via mechanisms of blind variation and selective retention is
compatible with but not committed to the selection processes being well calibrated to respect
probability theory. That is, minds need not come with an MCMC search algorithm or adaptor
grammar “built in” for useful structure and concepts to emerge during development. A bet-
ter way to think of it might be that these algorithms describe mental programs for novelty
generation that are useful “sweet spots” in a larger space of variation–selection mechanisms,
making them something that cognition might discover and subsequently exploit. Along these
lines, we might think of the metropolis rule or selective caching, as mental programs dis-
covered by more basic search mechanisms and retained as useful tricks that avoid the “dutch
book” inconsistencies that occur when one is insensitive to probabilities (Oaksford & Chater,
2007), and so supercharge a mind’s capacity to land on more concepts that compactly reflect
the evidence from the environment. This relates to recent proposals about how specific learn-
ing algorithms can emerge from more basic forms of learning (cf. Andrychowicz et al., 2016;
Dasgupta, Schulz, Tenenbaum, & Gershman, 2020).

5.1.3. Interfacing with subsymbolic processes
Program induction is extremely computationally demanding. Because in its most general

form, it implies the learner starts from a universal prior over programs, favoring nothing but
simplicity, it can take a very large amount of brute force search to land on good solutions to
specific problems (Ullman, Goodman, & Tenenbaum, 2012). This has meant that, in practice,

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12703 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 N. R. Bramley et al. / Topics in Cognitive Science 00 (2023)

program induction demonstrations of any scale have had to find ways to dramatically narrow
the search space. One approach is to use neural networks to compress high-dimensional
inputs, like images, into a smaller set of abstracted discrete features for program induction to
work with (Fränken, Lucas, Bramley, & Piantadosi, 2023; Mao, Gan, Kohli, Tenenbaum, &
Wu, 2019). The challenge here is that the two problems are interdependent—the search over
programs depends on the feature space, while the choice of features depends on their utility
in the programs, thereby demanding a joint optimization (cf. Y. Liang, Tenenbaum, Le, &
Siddharth, 2022). As a related approach, Dreamcoder (Ellis et al., 2021) describes a general
purpose architecture that can be trained to master a diverse set of program induction tasks
from raw (i.e., pixel level) inputs. The training works by switching back and forth between
learning a domain-specific language, or generative prior, for the specific task—using algo-
rithms like those we describe in this paper—and training a neural network to approximately
invert this generative model so as to propose hypotheses to explain data directly. While
data-driven proposals have their own limitations, tending to “overfit” whatever patterns are
in the data (Bramley, Rothe, Tenenbaum, Xu, & Gureckis, 2018; Michalski, 1969), a balance
of (symbolic) prior-driven and (subsymbolic) data-driven computation may well produce
good solutions more efficiently than solely searching generatively over programs as in the
algorithms we described. In sum, neurosymbolic hybrid approaches blend subsymbolic and
symbolic mechanisms in interesting ways that may yield new insights as to how these pro-
cesses are blended in cognition. In line with what we have argued throughout the paper, the
neural network component plays a localizing role, similar to that of the production weights
in a PCFG, the starting hypothesis in the MCMC scheme, and the concept library in an AG
scheme, biasing the generation of new hypotheses toward concepts that are, in some sense,
close to the discoveries made earlier during learning.

5.2. Three implications

We finally outline three key implications of this perspective: (1) for making sense of think-
ing; (2) for supporting learning and teaching; and (3) for understanding our own limitations.

5.2.1. What we are doing when we are “thinking”
One thing the evolutionary perspective helps explain is what people are doing when

they are ostensibly “off task.” We spend large portions of our time doing things like sleep-
ing, mind wandering, as well as what we might call idea generation, problem-solving, or
“brainstorming.” Offline learning is a challenge for normative accounts of cognition since
it seems to result in haphazard belief change without new evidence. However, from an
evolutionary perspective, cognition has plenty of work to do “offline.” One way to think
about the generation of new ideas is as analogous to prospecting for gold. Since we do not
know where the gold is buried, prospecting requires a combination of hard work and luck. It
starts with search (panning rivers for dust) but progresses through commitment, for example,
once one starts digging a mine to investigate a possible seam. Since most undiscovered
gold is underground, those who strike it rich probably put in the work, and also focused
their efforts selectively, digging deeper where more gold dust could be found at the surface.
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Analogously, if one is to discover better concepts—new maxima in an infinite and thorny
space of possibilities (cf. Ullman, Goodman, & Tenenbaum, 2012)—a lot of energy will need
to be spent searching—generating, entertaining, adopting, or discarding possibilities—but
also through committing to dig below the surface—caching and reusing subconcepts. We
have argued our complex concepts are discovered through the combination of stochastic
search (as in MCMC) and commitment (as in bootstrapping). We think this gels with the
recent suggestion that noise in cognition is better thought of as an essential feature than as a
bug (Sanborn et al., 2022), unlocking our capacity for creative thought and growth.

5.2.2. Insights for teaching and curriculum design
The existence of local search and bootstrapping mechanisms in the mind has a variety of

consequences and interactions with applied questions of what makes for a supportive cog-
nitive niche (Clark, 2006; Tooby & DeVore, 1987) and how should we design curricula to
help learners reliably “install” complex concepts. In the causal concept induction case we
used as a running example, Zhao, Lucas, and Bramley (2023) demonstrate the importance of
the order in which learners attend to examples. It is clear that existing pedagogical principles
reflect these ideas to some degree: We know to teach simple concepts at first and built up to
more challenging ones. But a formal model of conceptual bootstrapping could help optimize
curricula for particularly challenging concepts and help diagnose specific failures in learning
and tailor individual corrective curricula in areas such as math and science education (Raf-
ferty, LaMar, & Griffiths, 2015; Rafferty, Brunskill, Griffiths, & Shafto, 2016). The program
induction perspective has the potential to provide insights for how we actively explore our
environment when we do not already have a model of our uncertainty about it.

One opportunity to surpass our individual limitations seems to arise at the population level.
If we think of individuals’ belief trajectories as particles, cultural evolution can be seen as act-
ing like a kind of fitness-promoting filter (Daw & Courville, 2008). As such, we might think
of a social dynamics and communication as implementing another quasi-random approximate
probabilistic inference scheme, such that individual learners can adopt, repurpose, and mod-
ify each others ideas as well as mutating their own (Hawkins et al., 2022; Morgan, Suchow,
& Griffiths, 2022; Vélez, Christian, Hardy, Thompson, & Griffiths, 2023). A large enough,
diverse enough group will collectively have a better particle-based coverage of more of con-
cept space than any one mind. But critically, here the distributional coverage is emergent and
not represented in any individual (cf. Sloman & Fernbach, 2017).

5.2.3. Explaining our limitations
As we noted at the outset, perhaps the most challenging thing the evolutionary perspective

demands is humility about the quality or finality of our current ideas. It implies our belief sys-
tem is radically “located” and worse, that the alternatives we actually conceive of are shaped
by blind luck and limited to relatively minor, or “local” modifications (relative to our entire
belief system). This gives us the sensation of inhabiting a well-posed problem of selection:
that is, which of the alternatives that we have in mind is the most promising? But it also
necessitates that beyond our conceptual horizon, we discover better alternatives only through
what we might call “concerted randomness” as in the analogy of prospecting for gold. We
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think this perspective helps explain a number of the core patterns of biased or suboptimal
behavior found across behavioral experiments in cognitive psychology. We here simply high-
light how this proposal anticipates anchoring, probability matching, and confirmation bias.

5.2.3.1. Anchoring: Human judgments are often “anchored” to existing values in seem-
ingly arbitrary and nonoptimal ways. On the evolutionary view, this is not at all surprising.
Anchoring is an almost inevitable byproduct of any form of local search in an open possi-
bly multimodal space of possibilities. On our view, any inductively established expertise—
from domain general priors to learning mechanisms (both built in and learned during
development)—are subject to the same issue. They are all incrementally acquired and, there-
fore, nonindependent samples from a latent theoretical posterior. This makes them potentially
local optima, no different from the suboptimal products of biological evolution such as the
giraffe’s 5 meter laranyeal nerve, forced to travel around the aorta due to evolutionary selec-
tion that predates the elongation of giraffes’ necks (Wedel, 2011).

For agents who cannot try all possible hypotheses in parallel, making tweaks to their cur-
rent beliefs is usually a better bet than starting over. This is because variants of one’s cur-
rent hypothesis can, in general, be expected to have higher fitness than a completely ran-
dom guess (such as a new conceptual system sampled wholesale from an expressive and
untuned PCFG). Understanding anchoring as a consequence of local sampling and an estab-
lished library of concepts explains why the phenomenon is so ubiquitous (Bramley, Dayan,
Griffiths, & Lagnado, 2017; Lieder, Griffiths, M. Huys, & Goodman, 2018), but also predicts
the circumstances under which the effect can be reversed such that people’s judgments are
biased away from a provided anchor. Spicer, Zhu, Chater, and Sanborn (2022) show this can
happen when an anchor is sufficiently close to the learner’s initial hypothesis that their pro-
posal mechanism can tend to push them away from it on average. Generally, we think this
also lines up with the idea that mature cognition is characterized by the increasingly rigidity
of its established concepts and difficulty in entertaining foundational changes (Gopnik et al.,
2017).

5.2.3.2. Probability matching: Another common finding in human decision-making is
that people tend to select options in proportion to their posterior probability of being the most
valuable, as opposed to reliably selecting the best option, in an apparent violation of rational
decision theory (Shanks, Tunney, & McCarthy, 2002). One explanation for this is as a kind of
solution to the explore–exploit tensions in action selection (Sajid, Ball, Parr, & Friston, 2021;
Thompson, 1933). However, we think it is also relevant to note that probability matching is
also the best-case-in-expectation for a learner adopting the endpoint of a single local search
chain (see Bramley, Dayan, Griffiths, & Lagnado, 2017; Vul, Goodman, Griffiths, & Tenen-
baum, 2014). To the extent that one has space to generate and compare multiple alternative
possibilities, one can start to maximize over these options rather than simply match as in an
MCMC search. But, as we have already argued, selecting among alternatives is something
we can only do “locally.” If we repeatedly locally mutate and maximize, we are liable to
become trapped in a local optimum in the long run, as happens with gradient descent algo-
rithms. When it comes to revising our entire world model, it would seem we simply do not

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12703 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. R. Bramley et al. / Topics in Cognitive Science 00 (2023) 25

have the space in our minds to entertain wholesale alternatives, nor the capability to generate
alternatives far enough apart or numerous enough to allow for any kind of “distributional”
coverage of the posterior that would allow for selection of its maximum a posteriori.

5.2.3.3. Confirmation bias: A third well-known phenomenon is the tendency of learn-
ers to perform experiments or seek out data partial to their current favored hypothesis over
evidence that would distinguish maximally among the full space of possibilities (Klayman
& Ha, 1987; Nickerson, 1998). In a classic demonstration, Wason (1960) asked participants
to identify a hidden rule and initially simply told them that the sequence 2–4–6 followed
the rule. Wason’s intended true rule was simply “ascending numbers” but participants rarely
came up with this. In fact, they reasonably think of hypotheses more likely to produce the
sequence such as “triplets increasing by 2,” or “consecutive even numbers.” In testing these,
they tended to get only confirmatory feedback (i.e., the outcome was consistent with their
hypothesis) and so failed to narrow in effectively on the target concept. Again, we think this
makes sense under the evolutionary perspective. Since the space of concepts is infinite and
learners can only base their exploration on distinguishing among hypotheses, they have actu-
ally generated for consideration (or else behave randomly). This means that when it comes
to learning actively in an infinite hypothesis space of world models, any hypothesis-driven
strategy will appear confirmatory from a “god’s eye view” of the full possibility space.

5.3. Is cognition really blind?

On the face of it, characterizing cognition as a “blind watchmaker” (Dawkins, 1986) oper-
ating without design is quite a strange idea—as the human mind is surely the paradigmatic
“designer.” We agree the idea feels counterintuitive. This could be partly because idea gen-
eration is an aspect of cognition which has resisted formalization and which we associate
habitually with conscious control and free will, making it particularly strange to describe in
algorithmic terms.7 However, we think this applies to any mechanistic account of cognition,
so does not pick out what feel strange about this claim in particular. More specifically, we
suspect it may stem from a tendency in the rational analysis tradition to combine explorative
and exploitative components of inductive reasoning by treating them as all part of a deter-
ministic normative model. Probabilistic models of cognition (the tradition we broadly ascribe
to) succeed in describing how our thoughts and behavior are highly directed in ways that
reflect expectations we have built through experience. This is how actual watchmakers make
watches efficiently, avoiding repeating the tedious blind walk of trial-and-error by caching,
and resusing techniques that seem to work. However, watchmakers have to be able to develop
and improve on their skills and occasionally improve on the cutting edge in watch design.
Under a normative analysis, this part of the learning problem is easy to neglect because the
hypothesis space is laid out in the idealization of the problem.

It feels natural to give credit to someone for inventing a better watch and seems reasonable
even to say that they might set out deliberately to do so. Indeed, it seems more likely that an
expert could improve on the state of the art in watchmaking than an amateur. But it also seems
natural to distribute that credit, in the final analysis, between features wholly compatible
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with our claims in this paper: (1) pre-existing expertise (allowing them to focus “near” to
promising watch designs, or target their known shortcomings); (2) perseverance (in trying
many variations out); and (3) luck (in landing on something worth keeping). In this sense, the
success of such an endeavor could be newsworthy because it is not guaranteed, which seems
to fit nicely with the metaphor of innovation in cognition operating via local blind variation.

6. Conclusions

We have proposed that minds develop their inner world models through mechanisms of
blind local variation and selection. We showed how the learning as program induction frame-
work helps make this counterintuitive idea concrete and lends several algorithms as potential
process accounts. A little differently to other proposals in this area, we have tried to motivate
that the key explanatory virtue of these algorithms is not that they are, or can be, calibrated to
respect principles of normative inference. Rather, we argued that it is because they produce
variation recursively, while providing a receptacle (a current hypothesis and/or current con-
cept library) allowing for the selective retention of the more valuable or promising products
of this variation. We suggested that this can capture how it is that a hierarchical genera-
tive world model can grow within a mind through the recursive composition of a handful of
basic operations. Overall, we suggest that this “algorithm-level” view is important for under-
standing cognition, in particular, explaining why our thoughts are fundamentally anchored,
order-dependent, and unpredictable even to ourselves.
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Notes

1 We use “random”, in the subjective sense that whatever mechanism induces the variation
is exogenous to, and unpredictable by, the mechanism that is using it.

2 This launched the field of memetics, studying how ideas evolve. However, as far as we
can tell, the field has generally focused at the group level, on cultural transmission as one
form of selective retention (Aunger, 2000), and has had thus far had less to say about the
mechanisms of variation within the minds of individual cognizers.

3 There are various perspectives on why this is the case (e.g., Badcock, Friston, & Ram-
stead, 2019), but these are outside scope of this paper.

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12703 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [18/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. R. Bramley et al. / Topics in Cognitive Science 00 (2023) 27

4 We note at this point that by equating concepts with mental programs, we are adopting
a conceptual role semantics. That is, we are assuming that the meaning of individual
concepts is determined by how they connect to and interact with all the other concepts in
the mind of the individual. Thinking of programs as concepts, therefore, commits us to
an internalist view of meaning, such that correspondence between someone’s conceptual
system and the external world is contingent. This means that our account is not meant
to shed light on the thorny philosophical issue of how concepts relate to their external-
world referents (Fodor, 1978; Kripke, 1980; Putnam, 1975). For example, our account
cannot capture any ways in which concepts have shared public meanings, necessary or
accidental properties, nor how individuals might rely on the external world for conceptual
details rather than representing them (Rozenblit & Keil, 2002).

5 Fodor famously argued that on a “language of thought” view, everything the mind is
capable of conceiving—from carburetors to string theory—has to be built in from the
start (Fodor, 1975). At the time, this was seen as absurd consequence of symbolic
accounts of the mind and led to a move away from talking about minds in terms of
an inner language of thought. We think the advent of probabilistic program induction
techniques makes this claim much less implausible. Baked-in universality is a feature of
many simple (programming) languages. By universality, we mean a capacity for gener-
ating or representing anything that can be represented using any known system or lan-
guage; on this account, Turing-completeness can be taken to imply universality and can
be achieved with extremely simple generative grammar compared to the complexity of
other products of biological evolution.

6 Although, see Quiroz, Kohn, Villani, and Tran (2018), Welling and Teh (2011), for exam-
ples, of modern MCMC algorithms that do have some capacity to compress data.

7 Incidentally, free will in the lay-sense articulated by John Locke of performing behaviors
without a physical cause would amount to behaving randomly under a mechanistic theory
of cognition (Dennett, 2015).
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