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Abstract

Explaining why events occurred involves solving different
information-processing problems: inferring what actually hap-
pened (causal inference) but also highlighting a subset of the
causes that contributed to the outcome (causal selection). Al-
though past research has investigated causal inference and
causal selection separately, we report results of an experiment
(N=284) examining how people solve both problems jointly,
as is the case in real-world explanation settings. We find evi-
dence that participants infer the state of unobserved variables
on the basis of available evidence, and observe common be-
havioral signatures of causal selection. However, explanation
preferences deviate in important ways from the predictions of
a computational model combining existing theories of causal
inference and causal selection. In particular, participants were
disproportionately likely to select unobserved variables. We
suggest a possible preference for producing explanations that
allow the explainee to benefit from inferential work performed
by the explainer.
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Introduction
Why did this car accident happen? Why did the dinosaurs go
extinct? The drive to explain why a particular event happened
is one of the core psychological features of our species, and a
common topic of discussion and debate. In the field of causal
cognition, this problem of singular causal explanation has re-
ceived a large amount of attention (Lombrozo, 2006; Wood-
ward, 2021; Lagnado, 2021). Providing a causal explana-
tion typically involves solving several different information-
processing problems. In this paper we focus on two of the
most important:

-Causal inference: using one’s causal beliefs to figure out
what happened on the basis of the available evidence. For
example, given the driver was coming back from a party, how
likely is it he was drunk? Given it was very cold that night,
how likely was it there was ice on the road?

-Causal selection: highlighting one cause out of the sev-
eral causes that contributed to an outcome (Hesslow, 1988;
Quillien & Lucas, 2023). Suppose we know the driver was
drunk, that there was ice on the road, and that both factors
contributed to the accident. Which fact should we highlight
as the cause of the accident?

It is easy to see that solving both problems is crucial to
successful causal explanation in everyday cases. The details
of what happened are rarely all transparently observable, so
someone looking for an explanation typically needs to piece

them together from the available evidence. In the real world
any given outcome is the end result of a complex net of many
causes, so selection is necessary to avoid producing over-
whelmingly complex explanations. In the existing literature,
these problems have almost exclusively been studied sepa-
rately. In this paper we study how people give causal expla-
nations when they have to jointly solve both problems.

We sketch a computational framework for causal explana-
tion in the presence of unobserved variables, and report re-
sults of an experiment testing the predictions of this model.

Background
Inference and selection in singular causal reasoning
A large literature has explored how people make inferences
about whether an event happened, on the basis of information
about other events that happened. In a setting where events
are causally related to each other, this is a problem of causal
inference, and it can be solved using the normative formalism
of causal graphical models (Pearl, 2009). Many experiments
have found that people make inferences in ways that approx-
imate the normative prescriptions of causal models (Sloman
& Lagnado, 2004; Hagmayer et al., 2007; Lagnado, 2021;
Meder & Mayrhofer, 2017), although with noteworthy devia-
tions (Davis & Rehder, 2020).

In our experiment we focus on diagnostically inferring the
value of a potential cause, after observing the effect as well
as other potential causes occurring (see Pearl (2009) for a de-
tailed treatment of inference on causal networks). For exam-
ple, suppose that event C often causes event E, we observe
that E happens, and we want to infer the probability that C
happened. We can solve this problem using Bayes’ rule:

P(C|E) = P(E|C)P(C)

P(E)
(1)

where the likelihood P(E|C) depends on the parameters of
the causal model describing the causal system.

In contrast, research on causal selection investigates how
reasoners judge which of the factors that contributed to an
outcome is the most important cause (Hesslow, 1988). For
example, although the presence of the oxygen in the air and a
bolt of lightning both contributed to a forest fire, most people
have the intuition that the lightning is the cause of the fire.
For simplicity, extant research on causal selection has used



experimental settings where the reasoner already knows what
happened. Because of this, not much is known about causal
selection in contexts where people also need to make infer-
ences about what happened.

In this paper, we study causal explanation in a context
where some events are unobserved. For example, a contestant
passes a cookery test if they complete either a main dish or a
dessert in time, provided the judge likes the completed prod-
uct. We can see that the contestant completed both dishes
and won the show, but we don’t know which dish(es) im-
pressed the judge. Why do participants think the contestant
won? This task requires causal selection (because there are
four potential causes) as well as inference (because of the un-
observed events). In the next section we outline a computa-
tional framework for causal explanation in this setting.

Computational framework
We assume that the reasoner knows the causal structure of the
relevant system, and we make use of the formalism of Struc-
tural Causal Models, in which variables represent whether a
given event occurs (for example C = 1 means that event C
happened), and structural equations determine the causal re-
lationships between variables (see Pearl (2009) for details).

We consider a causal system where two variables A and B
can have a causal influence on outcome variable E. For each
cause variable X there is an associated unobserved variable Xu
that determines whether X can have an effect on E. Figure 1
shows a graphical model of such a causal system. We study
a disjunctive and a conjunctive structure. In the disjunctive
structure E happens if either both A and Au happen or both B
and Bu happen:

E := (A∧Au)∨ (B∧Bu) (2)

In the conjunctive structure E happens if all variables happen:

E := (A∧Au)∧ (B∧Bu) (3)

While the values of A and B are observed, the values of Au and
Bu are not. To give a causal explanation for why E happened,
the reasoner must i) infer the value of Au and Bu, ii) engage in
causal selection, iii) integrate the two processes. We discuss
each component in turn.

Causal inference
We assume the reasoner infers the values of Au and Bu using
Bayes’ rule:

P(Au,Bu|A,B,E) =
P(E|Au,Bu,A,B)P(Au,Bu)

P(E|A,B)
(4)

Causal selection
According to an increasingly popular family of accounts, peo-
ple engage in causal selection by imagining counterfactual
possibilities (Icard et al., 2017; Quillien, 2020; Henne et al.,
2019), see also Gerstenberg et al. (2021). We use a recent
computational model of causal selection based on this idea.

The Counterfactual Effect Size Model (CES; Quillien,
2020; Quillien & Lucas, 2023) holds that people judge
whether event C was a cause of event E by: i) simulating
many different alternative ways the situation could have hap-
pened ii) computing a measure of the dependence between C
and E across these possibilities.

Each counterfactual possibility is simulated by sampling
each cause variable from a probability distribution, and then
setting the effect variables according to their structural equa-
tions. Each cause variable V is sampled from the probability
distribution sδ(V )+(1−s)P(V ), where δ(V ) is the value of V
in the actual world, P(V ) is the prior probability of V , and s is
a ‘stability’ parameter. We set s = .7 on the basis of past em-
pirical data (Lucas & Kemp, 2015; Quillien & Lucas, 2023).

The CES score of C for E is then computed on the basis
of the simulated possibilites. In our setting, it is equivalent
to the Pearson correlation coefficient between C and E across
the simulated counterfactual possibilities.

The CES model has successfully explained data from past
experiments on causal judgments (Lagnado et al., 2013; Ger-
stenberg & Icard, 2020; Icard et al., 2017; Morris et al.,
2019; O’Neill et al., 2024). For example, it can explain the
phenomenon of abnormal inflation, whereby people tend to
select causes that are abnormal (i.e. infrequent or norm-
violating). The model can also explain abnormal deflation,
the tendency to select normal causes when the outcome was
over-determined (i.e. when either cause would have been
sufficient to produce the outcome, Icard et al. (2017)). The
model also made successful new predictions, both in simple
experimental settings (Quillien & Lucas, 2023; Konuk et al.,
2023) and in a real-world context (Quillien & Barlev, 2022).
However, to our knowledge it has not been tested in settings
like ours where the state of some variables is unobserved.

Causal explanation with unobserved variables

E

B

Bu

A

Au

Figure 1: Directed Acyclic Graph of our causal structure.
Grey nodes (A, B, E) denote observed variables; white nodes
(Au, Bu) denote unobserved variables.

We now offer a model of causal judgment that integrates
the two components above. Our goal is to assign an overall
causal score C(X = x) to each event, such that an event with
a higher causal score is a better candidate for a causal expla-
nation. For convenience we will denote the posterior distri-
bution in abbreviated form as P(Au,Bu|A,B,E) = Pα(Au,Bu).
It will also be useful to define K(X = x) as the CES score of
event X = x. We will also write K(X = x|V=v) to express



the CES score that would be assigned to X = x under the as-
sumption that V=v in the actual world (this is useful notation
when we need to consider several possible hypotheses about
the actual world consistent with our observations).

The CES model is defined for situations where we already
know the full state of the world. To apply it to the present case
(where this assumption doesn’t hold), we must make some
choices as to how to handle the uncertainty over Au and Bu.

One intuitive way to do this is to compute a CES score
for each possible state of the actual world compatible with
what we know, and then compute a weighted average of these
scores, where the weights are the probabilities of the states of
the world. For example to compute the CES score for A = a,
denoted K(A = a), we compute:

K(A = a) = ∑
Au,Bu

K(A = a|A = a,B = b,Au,Bu)Pα(Au,Bu)

(5)
where a and b are the actual-world values of A and B, and

K(X = x|V = v) is the CES score we would compute for X =
x if we knew that the actual-world values of V were v.

Computing the CES score for the unobserved variables
introduces one additional complication: we typically don’t
know whether the variable has value 1 or 0. One intuition is
that people will tend to say ‘Au = 1 caused the outcome’ if i)
it is in fact likely that Au = 1 in the actual world, ii) Au = 1 has
a high CES score. One way to implement this is to compute C
by multiplying the CES score K by the posterior probability
of the variable value. For example for Au = 1:

C(Au = 1) = K(Au = 1)Pα(Au = 1) (6)

= ∑
Bu

K(Au = 1|A = a,B = b,Au = 1,Bu)

×Pα(Bu|Au = 1)Pα(Au = 1) (7)

= ∑
Bu

K(Au = 1|A = a,B = b,Au = 1,Bu)

×Pα(Au = 1,Bu) (8)

Actual causation
In addition to causal selection, people also engage in a more
categorical kind of causal judgment, differentiating between
variables that had at least some contribution to an outcome
and those that did not contribute at all. In our computational
model we use a simple heuristic to exclude events that do
not qualify as actual causes. Specifically, we assign a causal
score of C(X) = 0 to any variable X whose value does not
match the value of the outcome (e.g., if E = 1, then B = 0
is not an actual cause of E) and to unobserved variables if
their observed counterpart has value 0. More sophisticated
computational accounts of categorical actual causation exist
(Halpern, 2016).

General mathematical framework
Here we give a more general formalization of our proposal,
generalizing from the examples above. We consider whether

variable realization X = x was the cause of outcome E = e.
We denote V the set of variables other than E and X . The CES
score K of X = x is computed by i) assuming X = x in the ac-
tual world, and ii) marginalizing across all possible values of
the other variables, weighted by their posterior probabilities:

K(X = x) = ∑
v∈V

K(X = x|V = v,X = x)Pα(v|X = x) (9)

The overall causal score C(X = x) is then computed by
weighing K by the posterior probability of X = x. We also
check for actual causation. Formally:

C(X = x) = K(X = x)Pα(X = x)T (X = x) (10)

where T (X = x) is 1 if X = x is an actual cause of E, and 0
otherwise.

Softmax choice model
The sections above specify how the model assigns causal
scores to variables. To convert these causal scores to pre-
dicted choice proportions, we assume that participants are
soft-maxing over the causal scores:

P(choice = X) ∝ exp
(

C(X)

τ

)
(11)

where τ is a temperature parameter (higher values indicate
more stochasticity) that we fit to the data.

Lesioned models
We will also explore ‘lesioned’ models to assess our claim
that when people make a causal judgment, they engage both
in inference (about the value of unobserved causes) and in
causal selection.

Lesioning inference Our first lesioned model lesions the
inference module. That is, we have Pα(Au,Bu) = P(Au,Bu).
In words, instead of setting Pα(Au,Bu) to be the posterior,
we ‘freeze’ it as the prior distribution. The model otherwise
works exactly as above.

Lesioning causal selection The second model lesions the
causal selection module. We assume that people do not en-
gage in counterfactual simulation when making causal judg-
ments. Once they determine which variables are actual causes
of E, they select these variables simply in function of their
posterior probabilities. In terms of the mathematical frame-
work defined above, we replace all CES scores K by 1.

Lesioning both inference and selection This model as-
sumes that people select among actual causes almost indis-
criminately. That is, they assign a causal score of C = 1 to ob-
served variable values, and a causal score of C = P(Xu = xu)
to unobserved variables, where P(Xu = xu) is the prior prob-
ability of that variable.

Lesioning actual causation We will also test variants of
the models defined above that do not check if an event is an
actual cause of the outcome.



Methods
We conducted a behavioral experiment to test our models.
You can see it here (at quiz select: Yes, No, True, 12).

Design
We investigated how participants select causes in scenarios
containing four binary causes: two observed variables A and
B, and two unobserved ‘companions’ Au and Bu, where the
variables are grouped in two pairs as in Figure 1. We asked
each participant to give causal explanations for variable E’s
occurrence or non-occurrence across the 12 different logi-
cally possible combinations of observed variables and effect
E (‘worlds’).1 Each trial presented the underlying causal
structure as a simple story, including prior probabilities for
all four variables, along with a simplified Directed Acyclic
Graph, to show what happens in general. Then participants
were shown a concrete state of observed variables (‘what hap-
pened this time’), and were asked to explain outcome E by se-
lecting one of the eight possible variable values (4×{0,1}).

The structure of the causal system was presented verbally
as a vignette. We used three cover stories: 1) a cookery tv
show (loosely based on Zultan et al. (2012)), 2) a univer-
sity reading group and 3) a job interview. For each trial, one
probability set and one cover story (‘cookery show’, ‘read-
ing group’, or ‘job interview’) was randomly selected. Our
analyses collapse across cover stories. The prior probabilities
were manipulated across three settings (see Table 1).

Table 1: Event probability manipulation: Three settings

Var P(Var = 1) Set 1 Set 2 Set 3
A .1 .5 .1
Au .5 .1 .7
B .8 .5 .8
Bu .5 .8 .5

Participants
We recruited 284 fluent-English participants (125 female, 1
other, age Mean ± sd 36.8 ± 12.4, range 18-78) using the
Prolific subject pool. They were paid £2.50 and the experi-
ment took Mean ± sd 17.7 ± 7.8 minutes.

Stimuli
Each trial was a series of text and pictures following the same
format, created using JSPsych 6.3.1 html plugins (De Leeuw,
2015). The general schema presented the base rates at which
all four events usually happen, and the causal setup of the
world (i.e. whether conjunctive — both events needed for the
outcome to occur, or disjunctive — just one), and then gave
the value of the observed variables this time. See Figure 2

1Five used the conjunctive structure defined in Equation 3, and
seven used the disjunctive structure defined in Equation 2. Unequal
split is due to the fact some events are possible for the disjunctive
but not conjunctive structure (e.g., A = 1, B = 0, E = 1).

for an example of the cookery show for a disjunctive setting
where A = 0, B = 1, E = 1. Finally participants selected one
among all eight possible explanations (e.g., in the example
shown in Figure 2, plausible explanations may include ‘The
chef completed the dessert’ (B = 1), ‘The dessert impressed
the panel’ (Bu = 1), etc).

Procedure
The experiment was implemented in JavaScript, hosted on
Prolific and participants completed it in the browser on their
own devices. After calibrating their computer screen, they
were presented with the study’s information sheet and con-
sent form. Participants were then given instructions for com-
pleting the experiment and shown examples of the stimuli.
They then completed a four-item quiz to test their understand-
ing before beginning the experiment. All participants saw all
12 worlds one by one in a random order. The left/right pre-
sentation position on screen of the variables and their prior
probabilities was counterbalanced between participants.

Analysis
Data were analysed using R version 4.1. Package lme4 (Bates
et al., 2014) was used for mixed effects regression models
following recommendations of Meteyard & Davies (2020),
via package lmerTest (Kuznetsova et al., 2017) for tests. The
Data and the R code for modeling and analysis are available
in our Repository.

Results
Figure 3 shows the choice proportions of participants and
our full computational model. Firstly, people’s judgments
are clearly different from a uniform distribution over possi-
ble responses (item-level goodness-of-fit χ2 = 8874, df = 287,
p < .001∗∗∗). Secondly, they choose actual causes over non-
actual (on 88.2% of trials, χ2 = 1993, p< .001∗∗∗); non-actual
are the gray error bars in Figure 3. Thirdly, they choose unob-
served variables over observed 61.2% of the time (χ2 = 170.4,
p < .001∗∗∗, see Figure 4 and subsection below).

Abnormal inflation as evidence for causal selection
Of special interest is whether participants’ judgments exhibit
the signature patterns of causal selection documented in past
work (Morris et al., 2019). Human causal selection typically
exhibits an effect called abnormal inflation, whereby peo-
ple attribute greater causal responsibility to causes that are
rare, infrequent or otherwise abnormal (Gerstenberg & Icard,
2020; Icard et al., 2017). In this analysis we focus on trials
where A = 1, B = 1, E = 1 in both the conjunctive and dis-
junctive structure, because these are the trials that are closer
to those investigated in past work on causal selection. In these
trials, the CES model predicts abnormal inflation.2

2Note the prediction for the disjunctive case contrasts with pre-
vious research which found abnormal deflation (a preference for
the most normal variable) in disjunctive structures (Gerstenberg &
Icard, 2020; Icard et al., 2017). However, our disjunctive structure is
more complex than in previous research, consisting of a disjunction

https://eco.ppls.ed.ac.uk/~s0342840/collider/collidertop.html
https://app.prolific.com/researcher/home
https://app.prolific.com/researcher/home
https://osf.io/3jh5n/?view_only=5aaf50acc6ed4c67b26d9bfdef939049


Figure 2: Simplified schematic of one trial: blue text gives base rates; grey/red text and graph describe what happened this time.

Disjunctive: A=1,B=1,E=1 Disjunctive: A=1,B=0,E=1 Disjunctive: A=0,B=1,E=1 Disjunctive: A=1,B=1,E=0 Disjunctive: A=1,B=0,E=0 Disjunctive: A=0,B=0,E=0

Conjunctive: A=1,B=1,E=1 Conjunctive: A=1,B=1,E=0 Conjunctive: A=1,B=0,E=0 Conjunctive: A=0,B=1,E=0 Conjunctive: A=0,B=0,E=0 Disjunctive: A=0,B=1,E=0
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Figure 3: Results in Setting 3 P(A) = .1,P(Au) = .7,P(B) = .8,P(Bu) = .5. Participants (bars) plus Full model (black circles).
Blue highlights for canonical “everything happened” world (A = 1, B = 1, E = 1), expanded in Figure 4. See Repository for
plots of the other probability settings.

To formally test whether participants reliably choose the
abnormal variable (among the two observed variables A and
B and excluding probability setting 2 from this analysis be-
cause A and B have the same probability), we ran a logistic
mixed-effect regression predicting selection of the abnormal
observed variable with random intercepts for condition and
participant, on a dataset restricted as above. This shows a
significant difference in the expected direction (odds ratio, es-
timate = .396, se = .349, CI [.204 .768], Z = -2.74, p < .01∗∗).

This result suggests that our experiment engaged some
of the same cognitive mechanisms as other causal selection
tasks. Since the abnormal inflation effect is predicted by a
counterfactual model, the effect provides some evidence that
this process of causal selection involved counterfactual rea-
soning.

of conjunctions (Eq. 2). The CES model predicts abnormal inflation
in this structure.

Unobserved vs observed variables

Participants could select an observed or unobserved event in
their explanation. For example, they can say that the read-
ing group was successful because the lecturer attended (an
observed event), or because (presumably) the lecturer talked
about the paper (an unobserved event that can be inferred
from the available evidence). We find that participants i) pre-
ferred to select unobserved relative to observed events on av-
erage, ii) selected unobserved events to a larger extent than
predicted by our main computational model, see Figure 4.

To test this effect, we sampled an explanation from the
model for each participant observation. We ran a bino-
mial logistic mixed-effect regression predicting ‘answer un-
observed’ with a fixed effect for group (participant v model),
and random effects for condition and participant. We found a
main effect of group (odds ratios, estimate = 1.50, se = .052,
CI [1.34 1.64], Z = 7.58, p < .001∗∗∗), whereby unobserved
variables were cited more often by participants than by the

https://osf.io/3jh5n/?view_only=5aaf50acc6ed4c67b26d9bfdef939049


model. We discuss this finding in the Discussion.

.1,.5,.8,.5 .5,.1,.5,.8 .1,.7,.8,.5

C
onjunctive

D
isjunctive

A B A B A B

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Response

P
ro

po
rt

io
n/

P
re

di
ct

io
n

0.0

0.2

0.4

0.6

P
ar

tic
ip

an
ts

F
ul

l M
od

el

Response

P
ro

po
rt

io
n/

P
re

di
ct

io
n

Observed

TRUE

FALSE

Figure 4: Left: Comparing A = 1, B = 1, E = 1 scenarios
across probability settings 1-3 and conjunctive vs disjunc-
tive structures. Upper facet labels show the probability of
A, Au, B and Bu in that order. Settings 1 and 3 show abnor-
mal inflation in both structures for observed variables. Right:
Overall propensity to select observed vs unobserved variables
(M±SE across worlds). Participants cite a larger proportion
of unobserved variables than the full model.

Model fit
We fit the models to the full data from all conditions by min-
imising negative log likelihood, with the softmax tempera-
ture parameter τ as a free parameter, optimised with Brent
method as implemented by R’s optim function. See Table 2
for the model fits. The full model (containing the three mod-
ules of causal selection, inference and actual causation) fit
well, but was beaten by the model lesioned to have no causal
selection. The item-level Pearson correlation coefficient be-
tween the full model and participants’ average judgments was
r(286) = .74, p< .001∗∗∗, and between the best-fitting causal-
selection-lesioned model and participants’ average judgments
was r(286) = .78, p < .001∗∗∗.

Model τ LogL BIC
full .299 -5112 10233
noActual .341 -5075 10157
noInference .310 -5442 10892
noSelection .366 -4257 8522
noActnoInf .337 -5202 10412
noActnoSelect .342 -4675 9359
noInfnoSelect .534 -5083 10174
noActnoInfnoSelect .761 -5743 11494

Table 2: Temperature parameter τ and model performance
metrics LogL and BIC.

The fact that lesioning the causal selection module im-
proves the fit of the model is surprising given the presence
of abnormal inflation in participants’ judgments, an effect
predicted by our causal selection model. This poor perfor-
mance can be explained by the fact that the causal selection

module tends to assign high causal responsibility to observed
variables in situations where participants actually prefer un-
observed variables. It also makes wrong predictions in many
cases where the outcome does not happen (E = 0). In sum,
while we have some evidence that participants are engaged
in causal selection (they are not simply selecting randomly
among observed causes of the outcome), our model does not
fully capture how they do so.

In contrast, lesioning the causal inference module resulted
in a worse fit (see Table 2). This result suggests that partici-
pants make approximately sound inferences about the proba-
bility that an unobserved event happened, and leveraged these
inferences in their causal explanations.

Discussion
Causal explanation is a complex cognitive activity that re-
quires solving multiple sub-problems. Research on causal
cognition has typically focused on one sub-problem at a time:
some experiments focus on causal inference while other ex-
periments focus on causal selection. This strategy has been
fruitful, but has also led to a neglect of the study of the gen-
eral problem of causal explanation where both problems are
in play, as is typically the case in the real world. Here we
considered how reasoners give causal explanations in a set-
ting where some events are unobserved, such that reasoners
need to engage in both causal inference and causal selection.
First, we sketched a computational framework for how these
two processes might be integrated by the mind. Then we re-
ported the results of an experiment testing how people give
causal explanations in this setting.

Our experimental data suggests people engage in inference
and selection in a way that is partially predicted by existing
theories of these processes. We also uncover phenomena not
predicted by our computational framework: in particular that
people prefer to explain an outcome by citing an unobserved
event, rather than an observed event, and that this preference
is stronger than predicted by our model. We speculate this
finding reflects the fact the explainer had to perform some
computational work to infer whether the unobserved event
happened. Offering this explanation spares the explainee this
work, a form of computational kindness (Christian & Grif-
fiths, 2016). Exploring this hypothesis is a fruitful direction
for future research.
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(2019). A counterfactual explanation for the action effect
in causal judgment. Cognition, 190, 157–164.

Hesslow, G. (1988). The problem of causal selection. In
D. J. Hilton (Ed.), Contemporary science and natural ex-
planation: Commonsense conceptions of causality. New
York University Press. doi: 10.1086/355318

Icard, T. F., Kominsky, J. F., & Knobe, J. (2017). Normality
and actual causal strength. Cognition, 161, 80–93.

Konuk, C., Goodale, M. E., Quillien, T., & Mascarenhas, S.
(2023). Plural causes in causal judgment. Proceedings
of the Annual Meeting of the Cognitive Science Society,
45(45).

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B.
(2017). lmertest package: Tests in linear mixed effects
models. Journal of Statistical Software, 82(13), 1–26. doi:
10.18637/jss.v082.i13

Lagnado, D. A. (2021). Explaining the evidence: How the
mind investigates the world. Cambridge University Press.

Lagnado, D. A., Gerstenberg, T., & Zultan, R. (2013).
Causal responsibility and counterfactuals. Cognitive Sci-
ence, 37(6), 1036–1073.

Lombrozo, T. (2006). The structure and function of explana-
tions. Trends in Cognitive Sciences, 10(10), 464–470.

Lucas, C. G., & Kemp, C. (2015). An improved probabilis-
tic account of counterfactual reasoning. Psychological Re-
view, 122(4), 700.

Meder, B., & Mayrhofer, R. (2017). Diagnostic causal rea-
soning with verbal information. Cognitive Psychology, 96,
54–84.

Meteyard, L., & Davies, R. A. (2020). Best practice guidance
for linear mixed-effects models in psychological science.
Journal of Memory and Language, 112, 104092.

Morris, A., Phillips, J., Gerstenberg, T., & Cushman, F.
(2019). Quantitative causal selection patterns in token cau-
sation. PloS one, 14(8), e0219704.

O’Neill, K., Henne, P., Pearson, J., & De Brigard, F. (2024).
Modeling confidence in causal judgments. Journal of ex-
perimental psychology: general, 153(8), 2142.

Pearl, J. (2009). Causality. Cambridge university press.

Quillien, T. (2020). When do we think that x caused y?
Cognition, 205, 104410.

Quillien, T., & Barlev, M. (2022). Causal judgment in the
wild: evidence from the 2020 us presidential election. Cog-
nitive Science, 46(2), e13101.

Quillien, T., & Lucas, C. G. (2023). Counterfactuals and the
logic of causal selection. Psychological Review.

Sloman, S., & Lagnado, D. A. (2004). Causal invariance
in reasoning and learning. Psychology of Learning and
Motivation, 44, 287–326.

Woodward, J. (2021). Causation with a human face: Norma-
tive theory and descriptive psychology. Oxford University
Press.

Zultan, R., Gerstenberg, T., & Lagnado, D. A. (2012). Find-
ing fault: Causality and counterfactuals in group attribu-
tions. Cognition, 125(3), 429–440.


	Introduction
	Background
	Inference and selection in singular causal reasoning

	Computational framework
	Causal inference
	Causal selection
	Causal explanation with unobserved variables
	Actual causation
	General mathematical framework
	Softmax choice model
	Lesioned models

	Methods
	Design
	Participants
	Stimuli
	Procedure
	Analysis

	Results
	Abnormal inflation as evidence for causal selection
	Unobserved vs observed variables
	Model fit

	Discussion

