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Abstract. Cognitive science can help us understand which explana-
tions people might expect, and in which format they frame these
explanations, whether causal, counterfactual, or teleological (i.e.,
purpose-oriented). Understanding the relevance of these concepts
is crucial for building good explainable Al (XAI) which offers re-
course and actionability. Focusing on autonomous driving, a complex
decision-making domain, we report empirical data from two surveys
on (i) how people explain the behavior of autonomous vehicles in 14
unique scenarios (N1 = 54), and (ii) how they perceive these explana-
tions in terms of complexity, quality, and trustworthiness (/N2 = 356).
Participants deemed teleological explanations significantly better qual-
ity than counterfactual ones, with perceived teleology being the best
predictor of perceived quality and trustworthiness. Neither the per-
ceived teleology nor the quality were affected by whether the car
was an autonomous vehicle or driven by a person. This indicates
that people use teleology to evaluate information about not just other
people but also autonomous vehicles. Taken together, our findings
highlight the importance of explanations that are framed in terms of
purpose rather than just, as is standard in XAl, the causal mechanisms
involved. We release the 14 scenarios and more than 1,300 elicited
explanations publicly as the Human Explanations for Autonomous
Driving Decisions (HEADD) dataset.

1 Introduction

The field of XAI has attracted much multi-disciplinary attention in
recent years. There is a shift from viewing XAl as a sterile scalpel
for dissecting Al models towards using XAl to coordinate knowledge
both between experts and non-expert stakeholders on one hand, and,
in a more expansive near-future vision, between natural and artificial
agents on the other [13}39]]. Cross-disciplinary work in XAI draws
on, for example, social sciences [35)], human-computer interaction [9}
36|, psychology [49] 52, [10], philosophy [54]], and natural language
processing [45]], fueling the increasing emphasis on human-centred
XAI. However, a majority of human-centred XAl is still based on
theoretical arguments that have seen limited empirical testing.

This limits the reach and potential of these methods despite promis-
ing to accessibly explain Al systems. For example, consider the topic
of causality, which is well established in theory as a cornerstone
of useful XAI systems [4} 135]. Much practical work has gone into
constructing causal and counterfactual explanations [47}|14]. While
evaluation with humans is used to validate the generated explanations,
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this is by no means a widespread practice [20]. Furthermore, many
user studies of XAl focus on evaluating the effectiveness of expla-
nations only in terms of various quantitative metrics (for example,
perceived trust [53] and reliability [57]]), but are not designed to assess
whether people would give these explanations in the first place.

This means that research in XAl provides methodological recom-
mendations for creating causal explanations but offers few insights
into whether people would actually explain Al systems according to
these suggestions. Accordingly, we also have a limited understanding
of the way people interpret different kinds of causal explanations.
For example, Miller [35] recommends using contrastive explanations
of the form “Why P instead of Q” based on an extensive review of
philosophical and social literature. However, this raises important
questions related to the contents of P and Q. For instance, they could
refer to a system’s intrinsic goals or to the causal mechanisms that
affect its output. In this paper, we suggest that getting traction on
these questions will involve a combination of integrating theoretical
insights from cognitive science and conducting targeted empirical
studies of how people generate and interpret explanations in context.

Research in cognitive science reveals that generating and inter-
preting causal explanations involves sophisticated computations and
inferences [28l 44,24} 3§]]. In particular, humans often adopt an inten-
tional stance [[7] when they explain the behavior of a system, ascribing
goals, beliefs, and intentions to the system. These explanations are
inherently teleological; they explain an agent’s decision in terms of
the purpose of that decision. In contrast, XAI models generate mech-
anistic explanations that appeal to the causal, usually mathematical,
logic and external conditions (e.g., input data) involved in leading to
the decision [46]. An explanation of the inherent purpose or goal of
the decision is often lacking.

Furthermore, to understand how people interpret causal explana-
tions, it is also important to assess whether they tend to give mech-
anistic or teleological explanations, even when the agent is not a
person but a machine. We also need to understand whether people’s
preferences for teleological and mechanistic explanations are at odds
with explanations produced by applications of different theories of
causation. This improved understanding would allow us to base the
design of causal explanations on empirically validated principles.

In this paper, we discuss relevant research in cognitive science on
causality, counterfactuals, and teleology as they relate to explanation.
We then report the results of two surveys with human participants re-
cruited through the online crowd-sourcing platform Prolific (N1 = 54;
N2 = 356). Rather than taking a controlled toy environment detached



from the idiosyncrasies of the real world, we base our experiments
on Al decision-making for autonomous vehicles (AV), a popular do-
main of application for XAI [25]. This setup has the advantage of (i)
eliciting explanations from real people rather than generating them
ourselves; (ii) having realistic situations where the ground truth is
still relatively accessible to the explainer; (iii) allowing us to explore
various scenarios while keeping constant the overall context.

In the first survey, participants were asked to watch 7 short driving
scenarios sampled from a total of 14 scenarios with multiple interact-
ing vehicles. They were then instructed to explain in their own words
the behavior of a selected ego vehicle along different explanatory
modes (descriptive, mechanistic, teleological, and counterfactual). In
the second survey, a different set of participants evaluated these expla-
nations along various dimensions, such as the number of perceived
causes, perceived complexity, quality, and trustworthiness.

We find that people preferred teleological and mechanistic concepts
to counterfactual explanations. They were also just as likely to refer to
the mental states of autonomous vehicles as of human drivers. In addi-
tion, perceived teleology was consistently ranked as the best predictor
of explanation quality and trustworthiness. Based on these results, we
recommend the field of XAl consider the use of different explanatory
modes as an important axis of analysis, especially focusing on the
role and effect of teleology. To summarise, our contributions are:

e Discussions of cognitive science on causality, counterfactuals, and
teleology as they relate to explanation, highlighting the role of
different explanatory modes (i.e., teleological, mechanistic);

e We curate and release a novel dataset of human-elicited and evalu-
ated explanations for autonomous driving, called the Human Ex-
planations for Autonomous Driving Decisions (HEADD) datasetm

e Two user studies providing evidence that teleology is preferred by
people when explaining an agent’s decision, regardless of whether
the agent is perceived as human or machine.

2 Foundations of Explanation

Explanation has a close relationship with causality [35] and, although
there are nuances in the details of how each is formalised [15} 17, [27],
it is broadly accepted that explaining a phenomenon often involves
asserting its cause. In turn, causality has a close relationship with
counterfactuals [27, 26| 44]]. The counterfactual theory of causation,
prominent in philosophy and psychology, holds that the meaning of
‘C caused E’ is (roughly), that if C had not happened then E would
not have happened [27, 51, 40].

Although the term causal can broadly be used for the whole class
including counterfactuals, it is nonetheless useful to distinguish a
narrower meaning of causal explanations from counterfactual expla-
nations. Counterfactual explanations explicitly highlight ways that
things could have turned out differently (e.g., “If I had done x, then y
would have happened”), whereas causal explanations as we use the
term refer explicitly to a mechanism (e.g., “‘y happened because x hap-
pened”). Empirically, when people give causal explanations they tend
to focus on strong causes that co-vary with an outcome, for example,
‘a drunk driver caused the crash’ [44]]. When constructing counterfac-
tuals, they tend to focus on controllable conditions that could have
altered the outcome, for example ‘the crash would not have happened
if the protagonist had driven home a different way’ [34].

Recent research has studied whether counterfactual or causal ex-
planations of an Al system are more effective. Empirical studies have

1 HEADD is available at https://datashare.ed.ac.uk/handle/10283/8714 and our
code for analysis at https://github.com/Stephaniedroop/AV_Explanations|

found that users who are given a counterfactual explanation of a de-
cision made by an autonomous system report more satisfaction with
that explanation than users who are given a causal explanation [5} 50].
Counterfactual explanations are also more effective at improving the
user’s ability to predict the behavior of the system. For example, Celar
and Byrne ([5]) showed participants the decisions made by an algo-
rithm designed to determine whether someone’s blood alcohol content
(BAC) is above or below the legal limit for driving. The decisions
were accompanied by a counterfactual explanation (‘if the person had
drunk 3 units of alcohol, they would be below the limit’), a causal ex-
planation (‘drinking 5 units of alcohol caused the person to be above
the limit’), or no explanation. The fact the counterfactual explanations
were rated as more satisfying than the causal explanations [5] is in-
triguing when placed next to computational models of counterfactual
reasoning which suggest people simulate several different counterfac-
tual worlds when they generate a causal explanation [32} 142 144 |8].
However, the research that suggests an advantage for counterfactual
explanations has focused on counterfactuals that typically highlight
one possible alternative state of the world and on explanations gener-
ated by very simple algorithms. For example, determining whether
someone is under the legal BAC limit can be done by applying simple
rules. The question arises as to whether this advantage of counterfac-
tuals generalizes to more complex settings. In particular, if the system
is sufficiently complex, like a self-driving car, people might take an
intentional stance toward that system, conceiving of it as an agent.

2.1 Explanatory modes

The human mind entertains different types of causal explanations [2|
12, [19]|. For example, we can think of someone’s actions in mecha-
nistic terms (‘she turned the handle with her hand’), or in terms of
the person’s goals and desires (‘she opened the door to let her friends
in’). Explainable Al most often takes the former mechanistic stance,
as the design of XAl methods is usually targeted at tracing the causal
chain from input to output in terms of mathematical manipulations
and algorithmic mechanisms. In contrast, the latter example corre-
sponds to taking an intentional stance, whereby we can conveniently
characterise and therefore predict an agent’s behavior by attributing
to them mental states such as beliefs, desires and intentions [7]]. The
intentional stance reliably emerges very early in development [11]],
and its computational underpinnings are beginning to be mapped out
by cognitive scientists [33} 3} 43].

Explanations that use the intentional stance are teleological: they
explain something in terms of the purpose it serves. For example,
saying that Mary opened the fridge in order to get some milk is a
teleological explanation because it explains Mary’s action in terms
of its purpose. Teleological explanations are intuitive to the human
mind, even outside the domain of psychological reasoning. They are
readily produced and endorsed by children [21129]. Adults sometimes
endorse teleological explanations even for inanimate processes, €.g.
when under time pressure [22} 23]]. Teleological explanations are gen-
erally useful because they identify causes that are robust to changes in
background circumstances: for example, my intention to drive home
would have caused me to get home even if my usual route was closed,
because I would then have taken a different route 30l 28\ [31.[7].

Evidence suggests that people can adopt the intentional stance to-
ward artificial systems [41,6]. Whenever this is the case, teleological
explanations of autonomous system decisions might be particularly
effective, because they are consistent with the way the user intuitively
represents the system [56]. In our study, we test whether this is the
case for autonomous driving which involves explaining the coupled
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decision-making of multiple agents with a mixture of both human and
artificial agents. Will people prefer explanations of a self-driving car
that are framed in teleological terms, or will they prefer mechanistic
explanations in terms of causal or counterfactual terms? In the next
section, we explain the relevance of teleology to the contrast between
counterfactual and causal explanations.

2.2 Teleology and counterfactuals

There is an interesting potential tension between counterfactual ex-
planations and teleology. One recipe for generating counterfactual
explanations is to take inspiration from the counterfactual theory of
causation and produce a counterfactual of the form ‘if C had not
happened, then E would not have happened’ where C is the cause
of outcome E. Consider for example a scenario where a self-driving
car stops because pedestrians are crossing the road. A counterfactual
explanation obeying the standard template would be ‘if the pedes-
trians were not crossing the road, the car would not have stopped’.
This explanation effectively highlights the material cause of the car’s
behavior, but does not have teleological content.

To generate a counterfactual explanation of the car’s behavior in
teleological terms, we might instead say ‘if the car had not stopped, it
would have run over the pedestrians’. This counterfactual implicitly
highlights the reason for the car’s behavior: the car stopped because if
it had not, a bad consequence would have followed. Note that this kind
of counterfactual has a different structure than the standard ‘if =C then
—E’ template: Instead of altering the cause (the pedestrians crossing),
we alter the effect (the car stopping). Teleological explanations are
still implicitly causal: the car stopped because it computed that not
stopping would have worse consequences than not stopping. Nonethe-
less, the complexity of teleological explanations might mean that they
will be difficult to express in terms of more standard counterfactuals.

These considerations suggest the following prediction: if partici-
pants intuitively conceive of self-driving cars as agents, and apply
the intentional stance toward them, they might not be satisfied by
counterfactual explanations of their behavior, especially if these coun-
terfactuals are of the form ‘if —C then —E’.

2.3 The present study

We curate a dataset of human-generated explanations of the decisions
of autonomous vehicles, as well as evaluations of these explanations
by a different set of participants. We anticipate that this dataset can
shed light on a variety of questions regarding both explanation gener-
ation and interpretation. Below, we focus on our main predictions as
they relate to the issues we reviewed in this section.

Our key experimental manipulation was the explanation prompt,
i.e. the type of explanations that participants were asked to gener-
ateﬂ Our Counterfactual explanation prompt requested participants
to ‘describe changes to the scenario so that the blue vehicle takes
different actions’. That is, it requested a counterfactual of the type
‘if =C then —E’, which is difficult to interpret in teleological terms
(see above). Our Mechanistic explanation prompt asked participants
to ‘explain how the blue car was influenced in the scenario to take
these actions’. This request elicits a causal explanation and does not
specifically target teleological features of the situation (although it
does not preclude them). Finally, our Teleological explanation prompt
requested participants to ‘explain why the blue car took these actions
over different actions to reach its goal’, foregrounding the agent’s

intentions, and emphasizing that the relevant counterfactuals are ones
where the agent acts differently.

Suppose there is a robust preference for counterfactual explana-
tion for artificial systems. In that case, we expect that explanations
generated in response to the Counterfactual prompt should be rated
as better than explanations generated in response to the other two
prompts (replicating the results in [S}50]]). In contrast, if the behavior
of a complex agent (such as a self-driving car) activates an intentional
stance, then the explanations generated in response to the Teleological
(and possibly Mechanistic) prompt should be rated as better than
the Counterfactual explanations. Additionally, if participants adopt
an intentional stance, we predict that explanations containing more
teleological features should be seen as more satistying.

3 Survey Methodology

Here, we describe the overall study procedure for our experiment
including the survey methodology, the independent measurement vari-
ables, the form of the collected data, and summary statistics of the
data. We performed two surveys as part of the user study. In the first
survey, we elicited natural language explanations from participants
about the behavior of an autonomous vehicle in various driving scenar-
i0s. The scenarios were shown in top-down animated videos (example
snapshots shown in Figure[T) and participants were asked to write in
four explanatory modes that included descriptive, mechanistic, teleo-
logical, and counterfactual explanations. In the second survey, we took
these explanations and asked another set of participants to evaluate
them according to their causal content and subjective quality.

For both surveys, we used the online crowd-sourcing platform
Prolific to recruit participants. We recruited from the USA, as the
surveys were in English and the video recordings used right-handed
traffic. We filtered for participants whose first language was English.
Participants were paid a pro-rated fee of £11 per hour and the study
was approved by the ethics committee of the authors’ institution. The
ethics approval and a consent form were shown to the participants
before allowing them to complete the surveys.

3.1 Survey I: eliciting explanations

A total of 54 participants (25 male and 29 female) filled out the
first survey with a median duration of completion of 25 minutes and
37 seconds. The participants’ ages ranged between 19 to 73 years,
with a median of 36 years. The majority of participants had some
form of tertiary education (49 people) with the largest group having
a Bachelor’s degree (19 people). We also asked participants about
their driving skills. Most participants reported having a valid driver’s
license (48 people) and the large majority of participants had been
driving for at least 2 years at the time of taking the survey (44 people).

3.1.1 Survey design

After having consented to take the survey, participants were shown
7 driving scenarios picked randomly with equal chance out of a col-
lection of 14 scenariosﬂ At the start of each scenario, participants
were shown a short (5 to 15-second-long) top-down animated video
recorded in the software RoadRunner 2023a by MathWorks. Example
snapshots from such videos are shown in Figure[I] They were also
explicitly told what the goal of the blue vehicle was. Participants were
then asked to answer the following four questions in their own words:

2 Note, we capitalise the type of explanation prompt as an experimental
manipulation to differentiate it from the underlying explanatory mode.

3 For the complete description of scenarios, refer to the appendix and the
metadata descriptions in the HEADD dataset.



Figure 1.

down before turning right, as its view is blocked by a building. Once the view is clear, the blue car notices pedestrians at the crossing and stops. (Mid; #11). The
blue car is passing a row of parked cars when it perceives a ball rolling onto the road. It sharply breaks, as a child emerges from behind a lorry. (Right; #12) The
blue car waits behind a lorry obscuring its vision of the road. It keeps on waiting as the lorry passes between the parked cars, to avoid other oncoming vehicles.

1. Descriptive: describe the actions of the blue car;

2. Teleological: explain why the blue car took these actions over
different actions to reach its goal;

3. Mechanistic: explain how the blue car was influenced in the sce-
nario to take these actions;

4. Counterfactual: describe changes to the scenario so that the blue
vehicle takes different actions.

Participants were able to re-watch the video clip as many times as
they wished, at any point during this phase. At the end of the survey,
participants were asked to answer questions regarding their driving
habits (driving license, frequency, annual covered distance) and their
demographics (age, education level, gender). We collected 1,308 free-
text explanations across all four explanatory modes.

3.1.2 Independent variables

We used three independent variables to vary the experimental setup in
a between-subjects design:

e Scenario: which 7 scenarios were selected for the participant. Sce-
narios were picked to ensure an equal coverage for all 14 scenarios;
e AV: for half of all participants, we showed “self-driving car” in
place of “vehicle”. This was done to measure the effects of partici-
pants knowing whether the blue car was controlled by a machine;
o AV explanation: for half of all participants who were shown “self-
driving car” in the previous variable, we also showed a high-level
explanation of how the AV works. This was done to understand
whether knowing how the AV worked affects people’s explanations.

Our within-subject independent variable was the explanation
prompt, i.e. the requested explanatory mode for the explanation (de-
scriptive, teleological, mechanistic or counterfactual; see above).

3.2 Survey 2: evaluating explanations

A total of 356 participants (176 male, 177 female, and 3 other) filled
out the second survey with a median duration of completion of 23
minutes and 7 seconds. Participants’ age ranged between 19 to 83
years, with a median of 38 years. The majority of participants had
some form of tertiary education (320 people) with the largest group
having a Bachelor’s degree (150 people). Most participants reported
having a valid driver’s license (330 people) and the majority of partic-
ipants had been driving for at least 2 years at the time of the survey
(329 people). The participants of Survey 1 and 2 were different.

Three example scenarios from HEADD. Participants were always asked to explain the behavior of the blue vehicle. (Left; #8). The blue car slows

3.2.1 Survey design

After consenting to take the survey, participants were guided through
a simple driving scenario that explained to them the core concepts
required to evaluate the explanations from Survey 1. This consisted of
teaching them the various explanatory modes (teleological, mechanis-
tic, contrastive) and the definition of a cause. We excluded descriptive
explanations because they do not describe causal relationships.

Following the teaching phase, we sampled at random one scenario
from the same 14 scenarios as in Survey 1, and let the participant
watch the video clip of the scenario. Before seeing any explanations,
participants were asked to answer the following two questions to
understand the factors behind whether and what sort of explanations
participants wanted for the selected scenario:

e FExplanatory need: how much an explanation would help better
understand the causes behind the blue self-driving car’s actions
(5-point Likert scale);

e Curiosity: why would the participant ask for an explanation (multi-
ple choice among 5 options regarding the decision-making of the
blue vehicle targeting correctness, predictability, alternative action
and outcome, and surprise).

For the selected scenario, we randomly picked 13 explanations
written by participants of Survey 1. The participants were not explic-
itly told the goal of the blue vehicle. For each selected explanation,
they were asked to answer the following questions, with parentheses
containing the data type from the question:

e Explanatory mode: how much the displayed explanation targets the
teleological or mechanistic explanatory mode. Participants rated on
three 5-point Likert scales the extent to which each of the following
aspects of the scenario was targeted by the explanation: the goal(s),
desire(s), or intention(s) of the blue car (variable name: Teleology);
the actions of the other traffic participants (MechanisticAgent); the
road layout or traffic laws (MechanisticLayout);

e Causes: how many causes were mentioned in the explanation as
perceived by the participant (non-negative integer);

e Contrastive: whether the explanation was contrastive (boolean);

e Preferences: participant ratings of the explanation according to
completeness, sufficiency, trustworthiness, satisfaction (5-point
Likert scale per attribute).

Finally, participants were asked the same driving experience- and
demographics-related questions as in Survey 1. As such, the only
independent variables that were manipulated in Survey 2 were which
scenario and which explanations were picked for a given participant.
No other manipulations were performed as the goal of Survey 2
was to provide rich evaluations of the explanations from Survey 1.



Table 1. Highest-quality explanations (as rated by Survey 2 participants) for
each explanation type, for scenario #8 shown in Figurem

Explanation type Example human-generated explanation

‘The blue car took those actions as it is the safest,
slowing down to make the turn successfully and
also stopping to allow pedestrians to cross instead
of betting on the fact that the pedestrians are paying
attention to the road.”

‘The blue car was influenced by the two pedestrians
waiting to cross as it slowed to a complete stop
allowing them to cross. The right turn was also 90
degrees which required the car to slow in order to
make a successful turn.’

‘If there were no pedestrians in the scenario, then the
car could have just immediately sped up to the speed
limit instead of stopping in front of the crosswalk.’

Teleological

Mechanistic

Counterfactual

Each explanation from Survey 1 received between 5 to 7 independent
evaluations, yielding a total of 4,963 evaluations.

3.2.2 Linguistic processing

We also investigated how linguistic complexity correlates with the
perceived qualities of explanations, so we performed processing steps
to the explanations to provide additional linguistic data to analyse.

First, each explanation was processed using the Spacy NLP library,
which, importantly for us, tokenizes and lemmatizes each explanation,
while also providing the dependency parse trees for them. Note, that
an explanation may be composed of multiple sentences, in which case,
the parsing was performed per sentence.

Second, for each explanation, we extracted standard measures of
complexity: the number of alphanumeric characters, tokens, unique
lemmas, and sentences. We have calculated this both across the entire
explanation and normalised by the number of sentences. We also
found the average dependency separation between tokens in a sen-
tence, to encode the distance between two dependent tokens.

While we performed our analyses for each measure of complexity,
we found that our result did not change significantly depending on
which measure we picked, therefore, here we only report results using
the number of tokens (words) in the sentence.

4 Results

Table[T|shows an example participant-generated explanation for each
explanation prompt. As a manipulation check, we find that expla-
nations generated in response to a Teleological prompt do exhibit
more teleological features than explanations generated in response
to other prompts, p < .001. We also find that they are less likely to
mention the actions of other agents, p < .001. In contrast, the type of
explanation prompt has no effect on the tendency of explanations to
mention aspects of the road layout or traffic laws, p = .44.

Figure 2] displays the zero-order correlation matrix among judg-
ments made by evaluators. Because ratings of Satisfyingness, Com-
pleteness and Sufficient Detail were highly correlated with each other
(all 7 > .8, all p < .001), we created a composite ‘Quality’ variable by
averaging them. This variable will be the main target in our analyses.

4.1 Mechanistic and Teleological prompts lead to more
satisfying explanations than Counterfactual

On average, explanations generated in response to a Mechanistic
or Teleological prompt (in Survey 1) were perceived as better (by
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Figure 2. Zero-order correlation between ratings. Correlation coefficients
circled in orange are non-significant after Bonferroni correction.
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Figure 3. Perceived explanation quality as a function of the number of words
in the explanation, and the explanation prompt. Each dot corresponds to the
average quality rating of one explanation (computed by averaging the ratings
of about 5 participants). Lines are linear fits with 95% Cls.

participants in Survey 2) than explanations generated for a Counter-
factual prompt; see Figure[3] This effect was statistically significant,
as assessed in a linear mixed model with random slopes at the sce-
nario level, and random intercepts at the scenario, explanation and
participant levels: relative to Counterfactual explanations, both Mech-
anistic explanations (3 = .10, [95% CI: .05, .14]) and Teleological
explanations (8 = .09, [95% CT: .05, .13]) elicited higher Quality.

In contrast, there was only weak evidence for an effect of explana-
tion type on Trustworthiness. Using a similar linear mixed modelling
approach as above, we find that relative to Counterfactual explana-
tions, Mechanistic (8 = .04, [95% CI: .01, .08]) and Teleological
explanations (5 = .04, [95% CI: -.01, .09]) are perceived as only
slightly more trustworthy, if at all.
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Figure 4. Perceived explanation quality as a function of number of words

and explanation prompt, for each of the 14 scenarios. Each dot corresponds

to the average quality rating of one explanation (computed by averaging the

ratings of about 5 participants). Lines are linear fits with 95% Cls.

All our linguistic measures of explanation complexity had a pos-
itive effect on perceived Quality, all ps < .001. Figure E| shows for
example that longer explanations (as indexed by number of words) are
rated as better. Interestingly, there was an interaction between number
of words and explanation type: number of words had a larger effect on
perceived quality for Mechanistic and Teleological explanations rela-
tive to Counterfactual explanations, as shown by a linear mixed model
with random intercepts at the scenario, explanation and participant
levels, interaction effect: p < .001. Intuitively, short explanations
tend to be low-effort explanations that are perceived as bad regardless
of the original explanation prompt, but participants who put some
effort into their explanations generated better explanations in response
to the Teleological and Mechanistic prompts.

Figure@ shows that the patterns discussed above are relatively ro-
bust across scenarios. Removing the scenario-level random slopes
from the linear mixed model we used to test the effect of expla-
nation type did not decrease model fit (full model, AIC = 15070,
without random slopes, AIC = 15060). On the other hand, the effect
of linguistic complexity appears to vary slightly depending on the
scenario: removing the scenario-level random slopes from a linear
mixed model predicting perceived Quality from number of words
results in a slightly lower model fit (full model, AIC = 14900, without
random slopes, AIC = 14908, p = .003).

4.2 Teleological features are the main predictor of
perceived quality and trustworthiness

Participants rated explanations along various features: for example,
whether an explanation mentioned the agent’s goals, how many causes
it described, etc. We ran linear mixed models to assess how well
these features predicted participants’ judgments of the Quality and
Trustworthiness of explanations. Figure [5] shows the standardized
coefficients from two linear mixed models respectively predicting
participants’ judgments of Quality and Trustworthiness; with random
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Figure 5. Standardized coefficients from linear mixed models predicting
perceived Quality (left) and perceived Trustworthiness (right). The first two
predictors (type) represent the experimental manipulation (the advantage of the
Teleological and Mechanical prompts relative to the Counterfactual prompt,
which is taken as a baseline), while the other predictors represent the effect of
perceived features of explanations. Error bars represent 95% Cls.

intercepts at the scenario, explanation, and participant levels.

Overall, perceived Teleology was the best predictor of perceived
Quality and Trustworthiness: i.e. the explanations that participants
judged as mentioning the goals, desires or intentions of the agent were
also perceived as better and more trustworthyﬂ The number of causes
mentioned by an explanation, the extent to which the explanation
mentioned the actions of other agents, and the extent to which it
mentioned road layout or traffic laws, also reliably predicted both
perceived Quality and Trustworthiness.

Importantly, perceived Teleology (how much an explanation men-
tioned the agent’s desires, goals and intentions, as judged by partici-
pants in Survey 2) and the Teleology prompt (whether participants in
Survey 1 were explicitly instructed to write Teleological explanations)
had independent effects on participants’ Quality judgments: Each
variable has a significant effect when controlling for the other (see
Figure[5). Even for explanations generated in response to a Counter-
factual or Mechanistic prompt, those that mentioned more teleological
features were judged as better and more trustworthy. We did not find
a difference in the effect of perceived Teleology across explanation
types: adding random slopes at the explanation type level did not
improve the fit of linear mixed models predicting perceived Quality
(p = .62) or perceived Trustworthiness (p = .27).

4.3 Neither perceived teleology nor quality ratings are
affected by autonomous vs. human driver status

We manipulated across conditions whether participants were told
the blue car was an autonomous vehicle or was driven by a human
driver (independent variable ‘AV’ in Survey 1). We then ran linear

4 To more formally establish that Teleology is the best predictor of perceived
Quality, we computed the AICs of linear mixed models where we removed
either Teleology, MechanisticLayout or MechanisticAgent as predictors. The
model without Teleology had a substantially worse fit (AIC=14262) than
the models without MechanisticLayout (AIC=14139) and without Mech-
anisticAgent (AIC=14108). A similar approach yields the same result for
perceived Trustworthiness (model without Teleology, AIC = 14712, without
MechanisticLayout, AIC=14633, without MechanisticAgent, AIC=14577).
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Figure 6. Perceived Quality as a function of Perceived Teleology, and
whether the blue vehicle was identified as an autonomous vehicle. Each point
represents one explanation. Lines are linear fits with 95% confidence intervals.

mixed models as above to assess whether the fact the person who
generated the explanation in Survey 1 was explaining the actions of
a human or an autonomous vehicle had any effect on either Quality
ratings or perceived Teleology (how much an explanation mentioned
the agent’s desires, goals and intentions, as judged by participants
in Survey 2). We found no significant difference in either ratings
between the two conditions: including AV as a predictor variable
contributed no significant improvement in the fit of the linear mixed
models predicting perceived Quality (p = .44) or perceived degree
of Teleology (p = .4). Furthermore, there was no improvement in
model fit from including the interaction between AV and perceived
Teleology (p = .94), indicating that the effect of perceived Teleology
on perceived Quality is the same regardless of whether participants
think the car is an autonomous vehicle; see Figure[6]

5 Discussion

In this paper, we introduced a rich dataset of human evaluations of
explanations. These explanations were themselves human-generated,
and targeted the behavior of autonomous vehicles in short video clips.
We hope this dataset will be a valuable resource to help researchers
better understand how laypeople generate and interpret explanations.
Our main result is that when people explain the behavior of self-
driving vehicles, they often take an intentional stance, conceiving the
vehicle as an agent with goals and beliefs. Specifically, we find that:

1. Explanations in response to a Teleological prompt are judged as
more satisfying than explanations generated in response to a Coun-
terfactual prompt, which discourages teleological content;

2. Explanations that are perceived as having teleological content are
judged as more satisfying—in fact, perceived teleology is the most
important predictor of explanation satisfaction;

3. Whether people are explaining the behavior of human drivers or
autonomous vehicles has no effect on the perceived quality of the
explanations or the perceived degree of teleology.

The latter result suggests that people have no qualms about refer-
ring to autonomous vehicles as having beliefs, desires and intentions.
The intentional stance is not just levelled at people but can be a con-
venient abstraction to help us quickly conceptualise and refer to the
outcome of any complex system. This is evident in the way we talk,
as witnessed by utterances like ‘the car doesn’t want to start today’, or
‘my laptop won’t talk to the printer’. Even if people may not actually
attribute mental content to machines, they still find it convenient to
reason as if machines had mental states [6} [41] [56].

Participants’ preference for teleological explanations highlights the
usefulness of concepts from cognitive science for XAl Cognitive
scientists emphasize the fact that most of our knowledge is organized
around domain-specific intuitive theories [18}[12]]. Explanations that
do not conform to the intuitive theory within which people intuitively
understand a system might not be the most effective ones. In the
domain of autonomous vehicles, explanations that resonate with peo-
ple’s intuitive psychology (i.e. that take the intentional stance) are
likely to be more effective. Notably, when people adopt the intentional
stance, they might not favor simple counterfactual-based explanations,
in contrast to previous findings in simpler contexts [3}50]. This also
provides support to the design of decision-making systems that ex-
plicitly utilise a goal-oriented model (e.g., [1[16]), as the decisions
of these systems would be more amenable to human understanding.

In addition, our study contributes to a nascent literature in psy-
chology that investigates “naturally occurring” explanations [33} 48]
While the psychological literature on explanations traditionally uses
well-controlled stimuli, asking participants to evaluate a handful of
experimenter-generated explanations, recent studies have asked par-
ticipants to evaluate explanations collected from online forums [53]]
or collected from a crowd-sourcing platform [48]]. While these studies
have focused on explanations that target general facts (e.g. “Why does
thunder make noise?’), we contribute to this literature by exploring
how people explain specific events (e.g. “Why did the car stop in this
particular situation?’). More generally, our video stimuli depict scenes
that are sufficiently rich to be interesting, but also simple enough that
explainers can plausibly identify the reason for the agent’s behavior.
We also replicate some results from these previous studies, finding for
example that more complex explanations (as indexed by the number
of causes they mention) are more satisfying.

The present study has some limitations. Following previous studies,
we collected subjective measures of explanation quality [53] 48]}, such
as how satisfying or trustworthy the listener considers the explana-
tion. However, subjective measures can diverge from more objective
measures (such as how much the explanation improves the listener’s
ability to predict the system) in subtle ways [3]]. It remains an open
question to what extent teleological explanations help the user better
predict the behavior of an autonomous vehicle, or better infer the de-
tails of what happened (cf. [24} 37, 38]]). Future research should also
investigate the extent to which explanation preference varies across
different contexts, beyond the limited range of scenarios considered
here. It seems plausible that explanatory preferences might vary in
function of many features of a situation, for example, whether an
agent’s goal is easy to infer, or how much the agent can see. Finally,
despite our dichotomous framing, good natural explanations may
contain elements of all the modalities discussed.
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A Scenarios

Table 2] shows a summary table of all 14 scenarios with descriptions.
The following figures (Figures [7]to [20) contain example images of
each scenario, giving both a schematic overview of the scenario and a
snapshot from the video that was used in the actual surveys.



Table 2. Summary table of all scenarios used for our surveys. The columns (E)efficiency, (C)omfort, and (O)cclusion specify whether the scenario was created
with the intent to prompt an explanation related to the efficiency or comfort of the driving action, or occluded elements in the environment, respectively.

ID Name E C O Description

1 Cutting be- Y Y N  Theego vehicle needs to exit the highway through the off-ramp, but it is blocked by two other vehicles in the outer
tween cars lane. One of the other vehicles notices the ego’s intention to exit and slows down to allow the ego to pass between the
two other cars. The ego then exits the highway.

2 Early right 'Y N N  The ego approaches a four-way crossroads from the south. At the same time a vehicle from the east approaches
turn maintaining a high speed. In addition, from the west another vehicle approaches which comes to a rolling stop at the
crossroads. This indicates to the ego that the vehicle from the west intends to turn left at the junction, and it is stopped
to give way to the vehicle from the east. As the goal of the ego vehicle is to turn right, it can use this realisation to

reach its destination sooner.

3 Merge into Y N N  The ego approaches a T-junction. The vehicle on its right is coming to a rolling stop. Initially, this may be because
waiting line the other vehicle could be turning left and is stopping to give way to the vehicle coming in the opposite direction.
However, as the vehicle from the opposite direction passes, the ego predicts that the vehicle on its right is stopping to

allow the ego to merge behind a waiting line of cars on the main road.

4 Enter Y N N Asthe ego approaches a roundabout, it recognises the intention of another vehicle already in the roundabout to exit at
roundabout the next roundabout exit, therefore, the ego does not need to stop completely at the roundabout entry and can enter the
early roundabout faster. The ego recognises the intentions of the other vehicle because it changes lanes as the ego arrives at

the roundabout and it also begins to slow down gradually for the turn.

5 Take over Y N N  The ego sees another vehicle slow down near a line of parked cars. It correctly predicts that the other vehicle intends
parking to park. Since there is no one else on the oncoming lane, the ego can take over the parking vehicle to reach its goal

faster which is to reach the end of the road.

6 Vehiclecut 'Y N N The vehicle in front of the ego cuts in front of the ego vehicle and begins to slow down. This is indicative of its
in front intention to turn right at the T-junction. As the goal of the ego vehicle is to head straight it decides to change lanes to

the left so that it may continue on towards its goal unimpeded.

7 Cautious N N Y Theego vehicle approaches a highway through an onramp where the view of the highway is obstructed by bushes. To
on-ramp avoid a possible collision, it slows down before merging onto the highway. The ego vehicle then observes another

vehicle on the highway, it gives way, and then merges onto the highway to continue ahead.

8 Occluded N N Y The ego vehicle enters an urban area with a junction and pedestrian crossings. Even though it cannot see the
crossing continuation of the main road curving to the right as the view is blocked by the buildings, the ego still slows down to

make sure that it can safely stop at the pedestrian crossing. Once the building is out of sight, the ego vehicle notices
pedestrians at the crossing and stops according to highway rules. It then continues onwards towards its goal.

9 Occluded N N Y Theego vehicle’s goal is to enter the roundabout. Even though it cannot see another vehicle in the roundabout due to
roundabout the bushes in the middle, it stops at the entry because it sees another vehicle on its left being already stopped. This is
indicative that the other vehicle is giving way to an unseen third vehicle in the roundabout. To execute its maneuvers

safely, the ego therefore decides to give way as well and wait until both of the other vehicles have passed.

10 Parked car N N Y  Theego arrives at a line of parked cars and decreases its speed slightly. It does this in order to pass the line of parked
pulling out cars more safely in case an unattentive driver exits their parking spot while the ego is passing by. When this happens,
the ego can break quickly thus avoiding an accident.

11 Ballrolling N N Y The ego notices a ball drift out from behind a truck in front of it. Thus, it decides to break quickly as it predicts the

on road ball to be followed by a person and this action avoids a potentially fatal crash.

12 Truck N N Y Onanarrow road with cars parked on each side, the ego is following a truck ahead of itself. When the truck slows
narrow down to a stop, the ego vehicle predicts that there is an occluded third vehicle oncoming on the road, therefore it
passage waits behind the truck. While the truck passes the parked vehicles, the ego still cannot see whether there are any other

oncoming vehicles on the road. So it waits until the truck is completely clear of sight and confirms that passage is safe
before continuing towards its goal.

13 Very N Y N The ego approaches a road section with very high curvature and rapidly decelerates to avoid swerving out of the road
curved road despite putting a large amount of jerk on the passenger which may be uncomfortable.

14 Occluded N Y Y Theego approaches an offramp it needs to exit through to reach its goal, however, a truck is blocking its way for
off-ramp changing lanes. It therefore decelerates rapidly to allow the truck to pass and to be able to confirm that there are no

occluded vehicles on the outer lane, after which it can safely change lanes and off-ramp.




Figure 7. Scenario 1 — (Top) Schematic overview; (Bot) Video snapshot.

Figure 9. Scenario 3 — (Top) Schematic overview; (Bot) Video snapshot.

Figure 8. Scenario 2 — (Top) Schematic overview; (Bot) Video snapshot.

Figure 10. Scenario 4 — (Top) Schematic overview; (Bot) Video snapshot.



Figure 11.

Figure 12.

Scenario 5 — (Top) Schematic overview; (Bot) Video snapshot.

Scenario 6 — (Top) Schematic overview; (Bot) Video snapshot.

Figure 13. Scenario 7 — (Top) Schematic overview; (Bot) Video snapshot.
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Figure 14. Scenario 8 — (Top) Schematic overview; (Bot) Video snapshot.



Figure 17. Scenario 11 — (Top) Schematic overview; (Bot) Video snapshot.

Figure 15. Scenario 9 — (Top) Schematic overview; (Bot) Video snapshot.

stopped

Figure 18. Scenario 12 — (Top) Schematic overview; (Bot) Video snapshot.

Figure 16. Scenario 10 — (Top) Schematic overview; (Bot) Video snapshot.



Figure 19. Scenario 13 — (Top) Schematic overview; (Bot) Video snapshot.

Figure 20. Scenario 14 — (Top) Schematic overview; (Bot) Video snapshot.
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