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Abstract

One of the main challenges of social cognition is inferring the competence
of others, which often occurs in contexts of limited information. Recent
researchs suggest that people can successfully infer the knowledgeability of
others from past accuracy, but the computational principles underlying these
judgments are unknown. We test whether people can both infer and search
for information about others’ competence in a near-optimal way, consistent
with rational Bayesian reasoning. In Studies 1 and 2, participants were pre-
sented with an individual’s performance on a trivia question and predicted
the individual’s ability to answer other trivia questions from the same theme.
Replicating and extending past results, we observe that participants very ac-
curately predict performance from limited information. Computational mod-
elling shows that participants’ inferences are better described by Bayesian
processes than by plausible heuristics, suggesting that participants ratio-
nally integrate new information with their prior expectations about others’
competence. Study 3 shows that participants can select which information
would be most diagnostic for inferring an individual’s competence, again in
a manner consistent with Bayesian rationality. Overall, our results suggest
that people approximate a rational Bayesian model both when searching for
and when integrating information about others’ competence.

Keywords: Computational Modeling; Social Cognition; Competence; Knowl-
edge Attribution; Information Search
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1 Introduction

A central challenge in social cognition is to infer the properties of others’ minds. If
research on mentalizing has started mapping the mechanisms which which people attribute
beliefs and intentions (e.g., Baker et al., 2017; Jara-Ettinger et al., 2016, 2020; Lucas et al.,
2014; Quillien & Taylor-Davies, 2025), comparatively little is known about how they infer
how competent other people are. Yet estimating an interlocutor’s knowledge and skills is
of tremendous importance: judgements of competence influence who we learn from (Birch
et al., 2008; Harris et al., 2018; Laland, 2004; Lane et al., 2013; Mercier, 2020; Najar et
al., 2020; Sperber et al., 2010), who we cooperate with (Cuddy et al., 2007), who we hire
(Cuddy et al., 2011; Fousiani et al., 2023; Rudman & Glick, 1999), and who we choose as
leader (Castelli et al., 2009; Garfield et al., 2025; Todorov et al., 2005).

Choosing competent and knowledgeable informants is crucial, yet assessing another
person’s competence is anything but straightforward. Many of the cues people use to infer
competence are unreliable (e.g. non-verbal cues), and even reliable cues (e.g. solving a
problem or giving a correct answer) are at best probabilistic (someone can get lucky when
guessing an answer). Moreover, in a social learning situation, the learner begins with a
knowledge gap, and inferring who is competent or knowledgeable when we are incompetent
or ignorant ourselves might be particularly difficult.

Like many aspects of social cognition, competence evaluation is an inferential process
carried out under uncertainty, one that depends extensively on following sound statistical
principles (Griffiths et al., 2024; Quillien et al., 2023). We suggest that people search for
and integrate information about others’ competence in a rational, Bayesian fashion, al-
lowing them to infer knowledge from a minimal amount of information. First, we argue
that, although past work has focused on unreliable cues of competence , accurate infer-
ences should rely on more accurate cues to competence. Second, after reviewing past work
on models of competence judgments, we derive a Bayesian model that integrates reliable
cues with prior expectations, taking into account the uncertainty inherent in any inference
based on sparse observations. Third, we test the model in three studies built around two
tasks requiring fine-grained inference about competence: Knowledge Attribution (a special
case of competence attribution) and Information Search (looking for information to update
competence judgments).
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1.1 Evaluation of competence: from unreliable to reliable cues

People rely on a wide range of cues when judging the competence of others, yet these
cues differ considerably in their diagnostic value. Unreliable cues–cues that have no or very
low diagnosticity–can play a role in initial competence judgments, typically in the absence of
more reliable cues. For instance, facial cues are used to form first impressions of competence
(Eisenbruch et al., 2024; Todorov et al., 2008; Todorov et al., 2015; Todorov & Oh, 2021),
even though these impressions often correlate poorly with actual traits (e.g., Todorov et
al., 2015). Other non-verbal cues to competence have been studied: in a meta-analysis,
Breil et al. (2020) showed that participants use several paralinguistic cues to estimate the
competence of others, including cues weakly correlated with competence (e.g., speech rate),
and uncorrelated cues (e.g., eye contact).

Adults and children also rely on cues that more reliably signal competence. Children
as young as three use past accuracy in a given task to predict future accuracy (Birch et
al., 2008; Corriveau & Harris, 2009; Harris et al., 2018; Koenig et al., 2004). Toddlers
and preschoolers are also more likely to trust someone who provided a good explanation
(Castelain et al., 2018; Clegg et al., 2019). Adults likewise consider convincing explanations
(Turpin et al., 2021) and the sharing of good ideas as signals of competence (Altay et al.,
2020; Klopfenstein & Mercier, 2025). Children gradually show finer inferences during their
development, as children and adults alike judge individuals who devise more efficient plans
as more competent (Kryven et al., 2021; Leonard et al., 2019; Török et al., 2023). Crucially,
these cues are reliable: individuals who have been accurate tend to remain accurate in later,
similar tasks (e.g., Himmelstein et al., 2021) owing to domain-specific knowledge or stable
cognitive abilities (Breit et al., 2024; Kryven et al., 2021); and the ability to produce
high-quality explanations correlates with intelligence (Turpin et al., 2021) and knowledge
(Lombrozo, 2006).

When reliable and unreliable cues are available, people demonstrate a clear preference
for reliable cues. Young children put more weight on an informant’s past accuracy than
on how familiar the informant is (Birch et al., 2008; Corriveau & Harris, 2009), or what
the informant’s accent is (Corriveau et al., 2013), their gender (Taylor, 2013), hair color
(Reyes-Jaquez & Echols, 2013), or whether they belong to the same group in a “minimal
group” paradigm (Elashi & Mills, 2014). Adults’ perception of a child’s intelligence is
influenced to a larger extent by the quality of the explanation the child provides than by
the child’s appearance (Blasi et al., 2015). Similarly, when judging credibility, a speaker’s
past accuracy is valued more than their expressed confidence (Tenney et al., 2007; Vullioud
et al., 2017). Even though perceived competence from facial appearance seems to influence
hiring decisions (Menegatti et al., 2021), participants consider these cues to be less useful
than reliable cues such as education, and they judged reliance on such impressions to be
inappropriate (Jaeger et al., 2022).

1.2 Rational inference of competence

Inferring competence, even from past accuracy, is far from straightforward (e.g., Jones,
1989). Imagine you must choose between two informants based on their answer to a single
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question. The first correctly answers an easy question, while the second fails to answer a
difficult one. Which informant would you choose? While the first informant was correct,
their success on a simple question reveals very little about the depth of their expertise.
Conversely, the second informant’s failure is also hard to interpret; even an expert might fail
to answer a particularly obscure question. How can people rationally infer the competence
of others from such limited information?

In some contexts judgments of competence rely on mentalizing, the ability to infer
the mental states that drive others’ actions. A prominent framework models this capacity
as Bayesian inference: people have a generative model mapping the mental states of other
agents to actions, and given what others do and perceive, observers can perform Bayesian
inferences to infer beliefs and desires (Baker et al., 2011; Baker et al., 2017; Jara-Ettinger et
al., 2020). Working within this framework, Aboody, Davis, et al. (2025) show that people
can infer others’ knowledge by treating choices as cost-benefit trade-offs: when actions are
cheaper for those who are knowledgeable, observing which option someone selects reveals
how much they know, assuming that they try to minimize costs (Jara-Ettinger et al., 2016;
Lucas et al., 2014). Participants were able to infer knowledgeability from choices, even if
they could not infer with precision what others knew (Aboody, Davis, et al., 2025). Here
we instead ask whether observers can infer competence—the possession of many pieces of
knowledge—from success or failure at a task, instead of a decision.

We suggest that inferring competence from performance is a probabilistic inference
problem, and we identify three key requirements for a rational inference of competence.
First, observers must have a generative model linking competence to performance. Perfor-
mance is inherently probabilistic: success in answering a question might be due to chance,
and failure to a momentary lapse of attention (Jones, 1989; Rasch, 1960). Observers must
thus treat performance as a cue to latent competence that can be reliable but is always im-
perfect. Second, observers must avoid putting excessive weight on any single observation.
Given that a single observation is bound to be noisy, rational observers should integrate
noisy observations with their prior expectations about competence (see, e.g., Griffiths &
Tenenbaum, 2006). Third, observers should ideally integrate the noisy evidence with their
prior expectations in a mathematically optimal manner, a process captured by Bayesian
inference (Griffiths et al., 2024; Tenenbaum et al., 2006).

Close to our aim is a computational model by Shafto et al. (2012) which builds on
results from the developmental literature showing that preschoolers integrate cues about
an informant’s past accuracy to decide who to learn from (see e.g., Aboody, Lu, et al.,
2025; Mascaro & Sperber, 2009; Pasquini et al., 2007). This is modeled as a joint Bayesian
inference over the state of the world and over an informant’s knowledge and helpfulness.
Knowledge and helpfulness are treated as binary: knowledgeable informants are assumed
to have the correct belief, whereas ignorant ones choose randomly among alternatives.
Likewise, an agent is assumed either to be willing to disclose useful information (helpful) or
not. This Bayesian framework captures children’s trust judgments across diverse informant
reliability conditions, showing how they simultaneously update their beliefs about the world
and about informants’ knowledge and intent. However, because it discretizes knowledge and
does not model observed informant accuracy as a noisy function of graded competence, it
does not support precise (e.g. item-level) knowledgeability estimations.
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Another closely related model, recently introduced by Xiang et al. (2026), focuses on
reputation management, but also integrates judgments of competence. They first introduce
a generative model where a certain level of competence causes agents to pass or fail a test
(which includes several questions), then use Bayesian inference to infer the competence
level from the observed outcome.This model operates at the test level with a fixed difficulty
(corresponding to the number of questions required to pass the test) by contrast with
the current model which focuses on item-level answers, and is geared towards information
search.

1.2.1 Computational Model. As suggested above, to infer another individual’s
competence, an agent should take into account the probabilistic nature of performance,
should not overweight any single performance, and update their priors along Bayesian prin-
ciples (assuming negligible processing costs, although see Todd & Gigerenzer, 2012). On the
basis of these requirements, we formulate a Bayesian model of competence inference which
optimally integrates novel information with prior expectations. After observing whether
an individual succeeds (S = 1) or fails (S = 0) at a task of difficulty β, the model up-
dates its prior belief about the individual’s competence θ. Defining the likelihood of success
as p(S | β, θ), we can formalize the inferential problem that participants faced with the
following Bayesian equation:

p(θ | β, S) ∝ p(S | β, θ) · p(θ)

The likelihood p(S | β, θ) is given by a generative model that captures how com-
petence and task difficulty jointly determine whether the agent succeeds. Note that we
assume that task difficulty and competence are independent (i.e. people are subjected to
tasks at random), such that p(θ | β) = p(θ), where p(θ) is the prior distribution over com-
petence. This Bayesian framework is very general and can be applied to many different
domains. Below we describe the specific additional assumptions we made in the context of
our experiments.

First, we assume that p(θ) is given by a normal distribution with mean µ and variance
σ2: θ ∼ N (µ, σ2). Second, we use the following simple generative model in which an
individual is more likely to succeed if their competence θ is above the task difficulty β.
Nonetheless, outcomes are stochastic: even individuals whose competence is slightly below
the task difficulty may succeed by chance. Formally, the likelihood function p(S | β, θ) is
defined as the cumulative distribution function (Φ) of a normal distribution centered around
β with a standard deviation ε:

p(S | β, θ) =
[
Φ((θ − β)/ε)

]S[
1 − Φ((θ − β)/ε)

]1−S

This function computes the probability of an individual succeeding at a task of diffi-
culty β for each potential value of competence θ. ε is a free parameter representing noise or
randomness in task success. More intuitively, the more an individual’s competence is above
the task’s difficulty, the higher the probability that the individual successfully completes
the task. Figure 1 illustrates the several parts of the models along with the corresponding
task for the participants.
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The proposed computational model addresses the three requirements for rational
competence inference. First, we define a generative model that links performance and
competence through our likelihood function p(S | β, θ). This assumes that performance is
probabilistically influenced by the latent competence, with the noise parameter ε capturing
the inherent uncertainty in this link. Second, the model incorporates a prior distribution
p(θ) that represents observers’ baseline expectations about competence levels. Third, the
model implements Bayesian inference, which provides statistically optimal belief updating
given the specified priors and likelihood function, thereby adhering to the principles of the
ideal observer model (Geisler, 2011). Together, these components yield precise predictions
about how rational observers should update their competence judgments across different
patterns of success and failure.

1.2.2 Overview of empirical tests. The present research aims to formalize the
underlying cognitive mechanisms of competence inference and test the robustness of this
ability in more complex scenarios. We do so in three studies that each provide a unique
contribution. We focus on inference of knowledgeability, a facet of competence, which
allows for reliable assessment through trivia quizzes. Recent research has demonstrated
that people can accurately infer overall knowledge of other participants after observing
them solve a single trivia question (Dubourg et al., 2025). This paradigm provides an
interesting test of our model, as Bayesian models are most diagnostic under information-
limited conditions, where the balance of prior and likelihood can be cleanly observed (Baker
et al., 2009; Vul et al., 2014). Study 1 provides an initial test of the model’s plausibility by
fitting it to the original Dubourg et al. (2025) dataset, and demonstrates that it accounts
for participant judgments more effectively than plausible heuristic alternatives. Second,
we test the generality and robustness of our model. While Dubourg et al. (2025) only
presented participants with correct answers, real-world inferences often rely on observation
of failure. Study 2 therefore presents a pre-registered extension in which individuals can
also fail at a task, allowing us to test whether participants could accurately predict the
competence of others from incorrect answers. Third, we shift from passive judgement to
active information seeking. To more closely mirror how people assess the competence of
others in the real world, Study 3 introduces a new Information Search paradigm. Here, we
ask whether participants can seek the most diagnostic evidence to update their competence
evaluations.

2 Study 1

This study re-analyses the open dataset by Dubourg et al. (2025) to test a com-
putational model of competence inference. We hypothesize that participants’ behav-
ior is best explained by a Bayesian model and compare it with lesioned models corre-
sponding to different heuristics. For this study, the computational models were not pre-
registered, but the code and analyses are available: https://osf.io/aecyr/files?view_only=
2b8fc0d1c99e450f8b8534e2aab83a92. The methods from Dubourg et al. (2025) are described
here in depth as they help understand the behaviors the present models will seek to emulate,
and because they are used (with some modifications) to collect new data in Study 2.

https://osf.io/aecyr/files?view_only=2b8fc0d1c99e450f8b8534e2aab83a92
https://osf.io/aecyr/files?view_only=2b8fc0d1c99e450f8b8534e2aab83a92
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Knowledge Attribution task

What is Earth’s only natural 

satellite?

Observed Question

Which planet in the solar 

system is the only one that 

rotates clockwise?

Information Search task

What is the largest 

celestial object of 

the asteroid belt?

What is Earth’s only 

natural satellite?

Bayesian model 

of Competence Inference:

𝑝 𝜃 𝛽, 𝑆) ∝ 𝑝 𝑆 𝛽, 𝜃) ⋅ 𝑝(𝜃)
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𝜎2

Prior Generative model

Participant 58 answered correctly the following

question:

𝑝
(𝑆
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b
s
=
1
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𝜃

Studies 1 and 2 Study 3

Do you think that Participant 58 correctly

answered: 

Which other question would best allow you to 

estimate Participant 58's knowledge?

𝛽𝑜𝑏𝑠

Figure 1 . Illustration of the different tasks and the Bayesian model of competence inference.
We represent here the Bayesian model which infers the competence θ of an individual after
observing them correctly or incorrectly answering a question (Sobs) of a given difficulty βobs.
The dashed circle means that the value is not observed by the model. The model has a
prior over competence which follows a normal distribution with a mean µ and a variance
σ2. We also illustrate how inferred competence is linked with the probability of success for
a given difficulty. Note that when inferred competence is exactly equal to the difficulty the
probability of success is 50%, it increases when θ is superior to β and decreases when θ is
inferior. The competence θ is inferred via Bayes’ rule by inverting the generative model.
The models and procedures are further detailed in the Methods of the corresponding studies.
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2.1 Methods

2.1.1 Participants. Dubourg et al. (2025) recruited 931 U.S participants via the
online platform Prolific. They excluded participants who failed the attention check (N = 11)
and participants who gave an answer in contradiction with the instruction (e.g. saying that
someone can’t answer a question although it is indicated that they answered it, N=72). 848
participants were thus included in the analysis (451 women, Mage = 43.8, SDage = 13.12).

2.1.2 Behavioral task. The behavioral task consisted of two consecutive phases:
a competence evaluation phase and a questionnaire. In the first phase, each participant was
randomly assigned one quiz theme–American History, Superheroes, or Solar System–each
comprising 15 questions (see Materials below). For each of five virtual individuals (simulated
participants), we revealed that the individual had answered one randomly selected item
correctly (e.g “How old is the Sun?”). Participants saw the text of that item but not its
answer. We call this item, which is the only piece of information that they have about the
participant, the observed question.

After having seen the observed question, participants predicted for each of the remain-
ing 14 questions in the theme whether that individual would answer it correctly (binary
scale: “Yes”/“No”). We call each of these items a “new question.” Note that our analyses
are conducted at the level of observed-new question pairs (i.e., for each observed question,
the 14 predictions on the new questions). Participants were further asked to rate the dif-
ficulty of the observed question between 0 and 100: “Out of 100 participants, how many
do you think got the question right?” (reverse-coded as 100 - rating). This procedure was
repeated five times per participant, each time with a new randomly chosen question and a
new individual label (Participant B, Participant C, etc.), making it explicit that different
individuals were being evaluated.

In the second phase, participants completed the full 15-item quiz for the theme they
had just evaluated. The answers were open text boxes and participants were instructed
that they could say that they did not know an answer.

2.1.3 Materials. Three different quizzes of 15 questions were used (Solar System,
American history and Superheroes). The questions were general trivia questions of varying
difficulty such as “What is the name of the first man that stepped on the Moon?” or
“What is the largest celestial object of the asteroid belt?”. Full materials are available in
the Supplementary Materials (SM, section 1).

2.1.4 Computational Models. Input data of the models. Each question
is assigned a difficulty score β. We first determine each question’s judged difficulty by
averaging participants’ difficulty ratings and dividing the ratings by 100. We then applied
a logit (qlogis) transformation 1 to map these scores from (0,1) to an unbounded scale.

Main Bayesian model. Our computational framework assumes that, in order to
do the task, participants first infer the competence θ of an individual from the difficulty of

1This transformation is inspired by the way difficulty is operationalized in frameworks like Item Response
Theory (Rasch, 1960). Intuitively, difficulty is not a bounded scale because even two questions that are scored
as having 100% difficulty (everyone in a sample of respondents fails to answer) might still not have the same
true difficulty. The qlogis transform is given by: qlogis(p) = log(p/(1 − p)).
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the observed question βobs and their success Sobs by using the previously described Bayesian
inference p(θ | βobs, Sobs). Second, participants have to predict the probability of success of
the individual on a new question of difficulty βnew. Using the law of total probability, this
can be computed by weighting the likelihood function with the posterior estimation of θ:
P (S = 1 | βnew, βobs, Sobs) =

∫
Φ((θ − βnew)/ε)p(θ | βobs, Sobs)dθ. The Bayesian model has

four free parameters that we fit to the data: the mean µ and variance σ2 of the prior p(θ)
over competence, the noise ε, and the temperature τ of the softmax function that turns
probability estimates into binary answers (see below).

We compare our main model with two alternative heuristic models: a “Threshold”
heuristic and an “Anchor” heuristic.

Threshold heuristic model. The Threshold heuristic formalizes a simple rule: if
the individual succeeded, their competence is at least the item’s difficulty; if the individual
failed, their ability is no higher than that difficulty, and all values of competence are oth-
erwise considered equally plausible. It is a lesioned version of the Bayesian model which
has the following two constraints. First, Competence follows a uniform prior on [-4,4] 2.
Second, performance is assumed to be deterministic (ε = 0): the individual answers cor-
rectly if and only if θ ≥ β. It follows that observing a correct response implies θ ≥ βobs; the
posterior is uniform on [βobs, 4] and zero elsewhere. An incorrect response implies θ < βobs;
the posterior is uniform on [−4, βobs] and zero elsewhere. Under the Threshold heuristic,
the predicted success probability on a new item equals the posterior mass of competence
above that item’s difficulty : PT (Snew = 1 | βnew, βobs, Sobs) =

∫ 4
βnew

pT (θ | βobs, Sobs) dθ
which is obtained from the general predictive formula by substituting the heuristic poste-
rior pT (θ | βobs, Sobs) and setting ε = 0, thereby turning the probit link Φ

(
(θ − βnew)/ε

)
into the indicator 1{θ ≥ βnew}. The threshold heuristic model has one free parameter: the
temperature τ of the softmax function.

Anchor heuristic model. Whereas the Threshold heuristic retains a full posterior
over competence, the Anchor heuristic collapses inference to a single-point estimate θ̂. After
observing an item of difficulty βobs and its outcome Sobs, the point-mass distribution is given
by: θ̂ =

[
βobs +∆]S

[
βobs −∆]1−S where ∆ is a free parameter above 0. Performance is again

deterministic (ε = 0), so the predicted success probability on a new item of difficulty βnew
is simply PA

(
Snew = 1 | βnew, βobs, Sobs

)
= 1{βnew ≤ θ̂}. Intuitively, the model assumes that

participants “anchor” their competence belief a small distance ∆ away from the difficulty
of the observed question — ∆ above the difficulty if the question was answered correctly,
or ∆ below the difficulty if the question was answered incorrectly. The model then predicts
deterministic success for items no harder than that anchor and failure otherwise. The
Anchor heuristic model has two free parameters: ∆ and τ .

Modelling Participants Binary Answers. All models estimate the probability
that an individual will answer a given question correctly. However, participants were asked
to provide binary answers. We assume that participants generate these answers stochas-
tically on the basis of internal probability estimates. We model this stochastic judgment
process using a softmax function. The probability that a participant answers “Yes” for a

2Theoretically, the values of θ can go from −∞ to ∞ but we reduce the interval from −4 to 4 for
computational reasons.
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question in the evaluation phase is defined as: P ("Yes" | βnew) = 1
/[

1+exp
(
(1−2pmodel)/τ

)]
where pmodel = P (S = 1 | βnew) for a given model. The temperature parameter τ is a free
parameter that controls decision randomness: lower values of τ result in more deterministic
(less random) choices, while higher values lead to increased randomness.

2.2 Results

All statistical analyses were conducted in R (v.4.2.2), using RStudio (2023.09.1+494).
We first describe participants’ performance on the task. Second, we fit the models, opti-
mizing the free parameters on all data, and compare them to establish which model better
accounts for participants’ behavior. Lastly, we present various exploratory analyses includ-
ing recovering the best parameters for each participant and conducting robustness checks.

2.2.1 Behavioral Results. Dubourg et al. (2025) report that participants were
able to infer the knowledge of individuals from a single piece of information. Participants’
prediction of the score of an individual correlated with the individual’s actual score on the
quiz. Aggregating across participants, the average estimated question difficulty was highly
correlated with the true difficulty of the question (r = 0.95; Pearson’s product-moment
correlation t(43) = 19.79, p < .001), see Figure 2A. Replicating Dubourg et al. (2025), we
modeled predicted difficulty as a function of true difficulty at the trial level with random
intercepts for questions and random intercepts and slopes by participants. Participants’
predictions tracked the true difficulty (β = 0.49, t(58.84) = 19.14, p < .001). The authors
highlight that knowing the answer to a question was not necessary to estimate its difficulty,
as even the lowest-performing 30% of the participants (who were not provided with answers
for unsolved questions) were able to accurately guess the true difficulty of a question.

In a re-analysis of the data, we found that participants can predict which piece of
knowledge an individual possesses from the information provided. We used the data col-
lected during the questionnaire phase to compute the conditional probability of correctly
answering a new question given that another question had been successfully answered.
This allowed us to compare participants’ average prediction on the competence evaluation
task with an objective benchmark (see Figure 2B). We fitted a linear model with the true
conditional probability as the independent variable and the average estimated conditional
probability as a dependent variable. Participants were able to predict the true conditional
probability with great precision (β = 0.87, t(628) = 43.78, p < .001, Adjusted R2 = 0.75).
At the trial level, participants’ answers were binary predictions of the individual answering
a question. To ensure that the effect was not merely a wisdom-of-the-crowd artifact, we ran
a logistic mixed-effects model with binary predictions as dependent variable and true con-
ditional probability as the independent variable with random intercepts for the observed
question and the evaluated question, plus random intercepts and slopes by participants.
This model indicated that participants’ predictions of success increased with the true con-
ditional probability (b = 5.53, z = 39.87, p < .001). This result shows that participants
can make accurate conditional probability judgments. In the next section we ask whether
this good performance is best explained in terms of normative Bayesian inference, or can
be explained by simpler heuristics.



BAYESIAN COMPETENCE INFERENCE 11

1
2

3

4

5

6

7

8

910

11

12

13

14

15

16
17

18

19

20

21

22
23

2425
26

27 28

29

30

31

32
33

34

35

36

37

38

39

40

41
42

434445

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
True difficulty

E
st

im
at

ed
 d

iff
ic

ul
ty

Participants'
estimations

A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
True conditional probability

E
st

im
at

ed
 c

on
di

tio
na

l p
ro

ba
bi

lit
y

Participants'
estimations

B

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
True conditional probability

E
st

im
at

ed
 c

on
di

tio
na

l p
ro

ba
bi

lit
y

Bayesian model's
estimations

C

Theme
a a a

American History Solar System Superheroes Difficulty 
difference 
(new − obs) −2 −1 0 1 2

Figure 2 . (A) Each question’s estimated difficulty as a function of its true difficulty. Num-
bers refer to the question ID (see SM, section 1). The red dashed line represents perfectly
accurate estimation. (B) Participants’ estimated probability answering a new question
correctly, conditioned on the performance on the observed question, as a function of true
conditional probabilities. (C) Our Bayesian model’s estimated conditional probabilities as
a function of true conditional probabilities. For (B) and (C), each data point corresponds
to the average values for a pair of two questions: one for which the individual’s performance
is observed, and one for which the individual’s performance has to be guessed. The red line
represents perfectly accurate prediction while the dark line represents the fit of the linear
model.
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2.2.2 Modelling Results. For each model, we estimated the best-fitting free
parameters by maximizing the log likelihood of the participants’ answers, given the models
and sets of parameters. All models were given the information that the virtual individuals
succeeded (Sobs = 1) in answering a question of a difficulty βobs, and had to predict the
success of this individual on a new evaluated question of difficult βnew. Based on the
maximum log likelihood for each optimized model, we calculated the Bayesian information
criterion (BIC) which penalizes more complex models. Our main model, fitted to all the
data, obtained a BIC of 67170, better than both alternatives models (BICT hreshold = 76192;
BICAnchor = 74079; lower BIC values indicate better fit). The difference between our Main
Model and the second best model is 6909, which indicates very strong evidence in favor of
our Main Model per standard interpretation criteria (Raftery, 1995). Table 1 indicates the
best fitting parameters for each model.
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Figure 3 . The participants panel shows participants’ estimation of the probability of suc-
ceeding on a new question depending on its difficulty, given that a previous question (the
observed question) has been answered successfully. The predictions made from the same
information are grouped together by a line and colored as a function of the difficulty of the
observed question. Each point represents an observed–new question pair. The three other
panels represent the predictions made by the Bayesian model and the two heuristic models.

Figure 3 represents participants’ average prediction for each pair of questions (630
observed–new question pairs) compared to the three models’ predictions. For each com-
putational model, we fitted a linear regression with the model predicted probability as
independent variable and participants’ average prediction as the dependent variable on all
pairs. Our main model explains 90% of the variance in participants’ prediction (β = 0.95,
t(628) = 73.48, p < .001, Adjusted R2 = 0.90). The Threshold model explains 59% of the
variance (β = 0.77, t(628) = 30.21, p < .001, Adjusted R2 = 0.59) and the Anchor model
explains 43% of the variance (β = 0.66, t(628) = 21.75, p < .001, Adjusted R2 = 0.43). The
main model was more strongly correlated with participants’ answers (r = 0.95) compared
to the Threshold model (r = 0.77) and the Anchor model (r = 0.66).

2.2.3 Exploratory and robustness analyses. The results of our confirmatory
analyses do not hinge on the fitting methods or on how item difficulty is represented. The
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Table 1
Model comparison results for Study 1

Model LLmax BIC µ σ2 ε ∆ τ

Bayes -33563 67170 0.01 0.71 0.66 0.42
Threshold -38091 76192 1.32
Anchor -37028 74079 0.5 1.29

details of these additional analyses are reported in the Supplementary Materials.

First, we re-fitted the models in Stan (Carpenter et al., 2017) and compared them via
Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO; Vehtari
et al. (2017); see SM, section 2). The Bayesian model showed a credible higher out-of-
sample predictive accuracy than the Threshold heuristic (∆elpd = -4,524.85, SE = 89.21);
the Anchor heuristic was not re-fit in Stan because its deterministic cut-off induces a non-
differentiable likelihood.

Second, we performed an individual-based analysis where we fitted each candidate
model for each participant, allowing them to have different parameters (see SM, section 3).
We computed a BIC for each participant and for each fitted model, we report the average
BIC along with standard deviation for each model. The main model fit was significantly
better than the Threshold model (BICBayes = 78.90 ± 21.12; BICThreshold = 87.77 ± 16.68;
t(895) = -15.45, p < .001, paired t-test) and the Anchor model (BICAnchor = 83.19 ± 17.83;
t(895) = -10.32, p < .001, paired t-test).

Lastly, we ran robustness checks that replaced judged difficulty with an objective
estimate of difficulty (see SM, section 4). Our main analyses use mean perceived difficulty
because we focus on how people make inferences given an estimate of item difficulty; how
those estimates are formed is beyond the scope of this paper. To ensure this choice does not
drive our results, we re-ran all analyses using item difficulties estimated from a Rasch model
(Rasch, 1960) fit to participants’ responses. The Bayesian model remained the strongest
predictor of participants’ predictions, outperforming the Threshold and Anchor heuristics.

The results show that participants can accurately estimate not only the overall knowl-
edge level of the virtual individual but also the probability of correctly answering each ques-
tion given the observed question. Our modelling results show that participants likely use
a generative model in which the estimated competence affects the probability of solving a
problem following Bayesian principles.

3 Study 2

The previous study has shown that participants’ inferences of the knowledgeability
of others can be accurately modeled as a rational Bayesian process. One limitation of the
previous study is that it only included observations in which the individual successfully
answered a question. Study 2 is thus a replication and extension of the previous study:
in addition to replicating the paradigm from Study 1, we investigate the inferences people
make about individuals who fail to answer a question. We predicted that participants’
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behavior would still be best captured by the optimal Bayesian Model. More precisely, we
put forward the following hypotheses:

H1. The predictions of the main Bayesian model are positively correlated with par-
ticipants’ average predictions.

H2. When fitted to the aggregated dataset, the main Bayesian model better captures
participants’ behavior than two alternative heuristic models.

The procedures, data collection, analysis plan and the models (includ-
ing implementation code) were pre-registered: https://osf.io/aecyr/?view_only=
2b8fc0d1c99e450f8b8534e2aab83a92

3.1 Methods

3.1.1 Participants. 899 U.S participants were recruited via the online platform
Prolific. Two exclusion criteria were pre-registered. First, participants who failed the at-
tention check were excluded (N = 19). Second, we excluded participants who gave an
answer that contradicted the instructions (e.g., saying that someone had answered a ques-
tion successfully although it was indicated that they had failed to answer it, N=108). 772
participants were thus included in the analysis (403 women, Mage = 41, SDage = 12.65).

3.1.2 Behavioral Task. This study followed the design of the evaluation phase
of Study 1 (see section 2.1.2). Participants were not presented with the questionnaire
phase. The materials used were the same as in Study 1 (see SM, section 1). As with Study
1, participants were asked to evaluate five virtual individuals after being presented with
a single piece of information about them: the answer to a single question (all questions
were drawn from the questions used in Study 1, which fell into three themes). The only
difference with Study 1 was a within-subject manipulation: on each trial, participants
were randomly told that the individual either failed to answer the observed question or
successfully answered it. Participants were then asked to evaluate whether the individual
got the other 14 questions of the same theme right or wrong and to evaluate the difficulty
of each observed question following Study 1 procedures.

3.1.3 Computational Models. The main Bayesian model and heuristics used
in Study 1 were pre-registered and re-used in this study.

3.2 Results

3.2.1 Behavioral Results. Participants’ average estimation of the mean diffi-
culty of a question was highly correlated with the true difficulty of the question as estimated
from Study 1 (r = 0.95). Participants’ judgements of difficulty in Study 2 were almost iden-
tical to those in Study 1 (r = 0.98). At the trial level, a linear mixed-effects model with a
random intercept for the observed question and by-participant random intercepts and slopes
showed that predicted difficulty significantly tracked true difficulty (β = 0.47, t(64.82) =
18.28, p < .001).

https://osf.io/aecyr/?view_only=2b8fc0d1c99e450f8b8534e2aab83a92
https://osf.io/aecyr/?view_only=2b8fc0d1c99e450f8b8534e2aab83a92
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Table 2
Summary of the fit results for Study 2.

Model LLmax BIC µ σ2 ε ∆ τ

Bayes -30924 61892 0.32 0.59 0.69 0.45
Threshold -34969 69950 1.41
Anchor -33645 67311 0.52 1.28

We computed the true conditional probability of answering the evaluated question
given the individual’s answer to the observed question, using participants’ answers to trivia
questions from the second phase of Study 1. We then fitted a linear model with the true
conditional probability as the independent variable and participants’ average judgement
for each observed-new question pair as the dependent variable (N = 1,260: 630 pairs × 2
observed outcomes; see Figure 4). Results indicate that participants are able to predict
true conditional probability with very high precision (β = 0.91, t(1258) = 77.13, p < .001,
Adjusted R2 = 0.83). Performance was a little bit higher when restricting our analysis to
trials with only information about a failure (β = 0.92, t(628) = 57.63, p < .001, Adjusted
R2 = 0.84), compared to trials with only information about a success (β = 0.86, t(628)
= 41.71, p < .001, Adjusted R2 = 0.73). We also ran a trial-level mixed-effect model
with participant’s binary predictions as the dependent variable. A logistic model with
random intercepts for the observed question, the evaluated (new) question, the observed
outcome, and by-participant random intercepts and slopes, further showed that participants
accurately predicted the conditional probability of answering a new question given the
outcome on the observed question (b = 2.16, z = 12.31, p = < .001).

3.2.2 Modelling results - confirmatory analyses. As in Study 1, we used
maximum likelihood estimation to find the best-fitting parameters for each model (see Table
2). We compared the three models’ predictions with the average judgement of participants
by fitting three linear models (see Figure 5). Supporting H1, our main model was strongly
correlated with participants’ behavior (β = 0.94, t(1258) = 101.22, p < .001). In support of
H2, our main model obtained a BIC of 61892 indicating a better fit to the data compared to
the two heuristic models (BICThreshold = 69950, BICAnchor = 67311). We also found that
the main model explained 89% of the item-level variance (Adjusted R2 = 0.89), whereas
the Threshold model explains 36% of the variance (β = 0.60, t(1258) = 26.47, p < .001,
Adjusted R2 = 0.36), and the Anchor model explains 55% of the variance (β = 0.75, t(1258)
= 39.62, p < .001, Adjusted R2 = 0.55).

3.2.3 Exploratory and robustness analyses. We report below a summary of
the exploratory and robustness analyses performed, see Supplementary Materials for details.
We conducted the same analyses as in Study 1.

First, using PSIS-LOO to compare our models, we found that the Bayesian model had
a higher out-of-sample predictive accuracy than the Threshold model (∆elpd = -4,040.93,
SE = 84.66; see SM, section 2).

Second, we estimated the best free parameters for each participant (see SM, section
3). Our main model explained the behavior of participants significantly better than the
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Figure 4 . (A) Participants’ estimated probability of answering a new question, given perfor-
mance on a previous question (the observed question), as a function of the true conditional
probability, including all trials. (B) Trials in which the observed question is correctly an-
swered. (C) Trials where the observed question is incorrectly answered. Each data point
is an observed-new question pair. The red line represents the optimal prediction while the
dark line represents the fit of the linear model.

Threshold heuristic (BICBayes = 76.85 ± 21.46; BICThreshold = 88.98 ± 15.37; t(771) =
-19.65, p < .001, paired t-test) and Anchor heuristic (BICAnchor = 84.75 ± 17.61; t(771) =
-16.11, p < .001, paired t-test).

Lastly, we replicated our main analyses by providing models with true difficulty and
found that the Bayesian model remained the best fitting model, outperforming the Thresh-
old and Anchor heuristics (see SM, section 4).

This study replicates the findings of Study 1 and extends them to cases in which the
observed question was not successfully answered.

4 Study 3

The previous studies have shown that participants are able to rationally infer the
competence of an individual based on a single piece of information, using this estimation of
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Figure 5 . The participants panel shows participants’ estimation of the probability of suc-
ceeding on a new question depending on its difficulty, given that another question (the
observed question) has previously been answered successfully (upper panel) or unsuccess-
fully (lower panel). The predictions made from the same information are grouped together
by a line and colored in function of the difficulty of the observed question. Each point repre-
sents an observed-new question pair. The top row includes only the trials when success was
observed and the bottom row includes only the trials when failure was observed. The three
other panels represent the predictions made by the Bayesian model and the two heuristic
models.
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competence to accurately attribute knowledge to others. Bayesian updating is most clearly
demonstrated when participants must draw inferences from limited data.

Study 3 uses a different paradigm, one which asks participants to query information
that would help them better assess competence. This paradigm provides an important
test of Bayesian updating in more naturalistic conditions where people are not limited to a
single piece of information. The Bayesian framework allows one to quantify the information
value of a query, allowing us to derive principled normative predictions about participants’
choices.

Assuming that people are interested in gathering more information about others’
competence, are they able to compute the expected amount of information gained if they
observe the individual answering a new question, and as a result select the most informative
question to ask?

Assessing the rationality of people’s information search is typically done by comparing
people’s choices to a normative model (Dubey & Griffiths, 2020; Klayman & Ha, 1987;
Nelson, 2005; Oaksford & Chater, 1994; Tsividis et al., 2014). We adopt an Optimal
Experimental Design (OED) framework (Liefgreen et al., 2020; Nelson, 2005; Quillien,
2023). OED models are composed of two main parts: a specification of the inferences an
individual should make given an observation (identified by Studies 1 and 2), and a measure
of the amount of information gained following such an observation.

In this study, we present participants with one piece of information about an individ-
ual’s competence. We then present participants with a discrete choice task in which they
have to choose which new question to ask that individual. The Bayesian model is used to
formalize participants’ estimation of competence if they asked each question, which allows
us to design a normative model to quantify the Expected Information Value of each query.
We pre-registered the following hypotheses:

H1. The participants’ odds of selecting a query is significantly correlated with the
Expected Information Value of the query as computed by the normative model.

H2. Participants’ information search behavior depends on the information they have
been provided about the previous performance of the individual they are evaluating.

The procedures, data collection, analysis plan and the models (including im-
plementation code) were pre-registered: https://osf.io/aecyr/files/osfstorage?view_only=
2b8fc0d1c99e450f8b8534e2aab83a92

4.1 Methods

4.1.1 Participants. Three hundreds and one U.S participants were recruited via
the online platform Prolific. Five participants who failed the attention check were excluded
for a final sample of 296 participants (155 women, Mage = 39.2, SDage = 13.4).

4.1.2 Behavioral task. The first part of the task was similar to the previous
studies. Participants were introduced to a virtual individual who had answered, rightly or
wrongly, a question on one of three themes. For the observed questions, we used a subset of

https://osf.io/aecyr/files/osfstorage?view_only=2b8fc0d1c99e450f8b8534e2aab83a92
https://osf.io/aecyr/files/osfstorage?view_only=2b8fc0d1c99e450f8b8534e2aab83a92
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five questions from the materials of the previous studies (see SM, section 1 for Materials).
Then, in contrast with the previous studies, participants were told that they had to select
an additional question in order to gather more information to assess that individual’s level
of knowledge or ignorance. Participants were told to imagine that we would give them
feedback about whether the individual got the selected question right or wrong. Note that
we were interested in which question they would select, so no feedback was provided. They
could select one question among a set of six pre-selected questions (one set per theme, see
SM, section 1). We refer to these selectable questions as “queries.” This procedure was
repeated 10 times: participants were randomly assigned to a theme and were presented
to all ten virtual individuals for this theme (each of the five observed questions answered
correctly or incorrectly). Figure 1 provides an illustration of the task.

4.1.3 Computational Models. After observing one performance of the virtual
individual, participants had to select which question they would like to reveal in order
to improve their estimation of competence. We formalize a normative model with two
components: (a) an ideal observer which specify the inference made after an observation
and (b) an ideal search model that scores each candidate query by its Expected Information
Value (assuming that inferences is made in the way specified by the ideal observer model).

Ideal observer model. The ideal observer model uses the difficulty of the observed
question (βobs) and the observed success or failure (Sobs) to update its estimate of com-
petence p(θ | βobs, Sobs). The model is strictly identical to the Bayesian model presented
in the previous studies that provide evidence that this model is a good approximation of
people’s inference. For this study, we do not re-fit the free parameters; instead we use the
mean of the best-fitting values from Studies 1 and 2 (the pre-registered values were µ =
0.15, σ2 = 0.65 and ε = 0.7). Thus, before seeing any information, the model has a prior
over competence of θ ∼ N (µ = 0.15, σ2 = 0.65).

Ideal search model. The ideal search model aims to quantify the information gained
from selecting a query. We assume that once they see a new information (i.e observing a
success or failure Snew on a new question of difficulty βnew) they will perform a Bayesian
update as described in the previous section.

We measure the information gained by observing a new question answered by the
virtual individual as the Kullback-Leibler divergence (DKL; Kullback & Leibler, 1951) of
the previous estimation of competence p(θ) from the new posterior distribution p(θ′), given
by:

DKL(p(θ′) || p(θ)) =
∫

p(θ′)log(p(θ′)
p(θ) )dθ′

When selecting a query, participants do not yet know how their competence estima-
tion will be affected. However, they can calculate the Expected Information Value (EIV)
of each potential query. They do so by simulating two scenarios–one in which the in-
dividual answers the new question correctly (Snew = 1), and one in which they answer
incorrectly(Snew = 0)—-and then weighting these outcomes by their respective probabili-
ties (given their estimation of the difficulty βnew of the question). This procedure can be
formally expressed as:
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EIV (Query) =
∑

s∈{0,1}
DKL

(
p(θ′ | βnew, Snew = s) || p(θ)

)
P (Snew = s | βnew, θ)

In summary, the normative model updates its estimation of competence once with
the initial observation (βobs, Sobs). Then, for each candidate query with difficulty βnew, it
computes the Expected Information Value by averaging the information gains over the two
possible outcomes (Snew = {0, 1}).

Alternative “no-update” model. We also test an alternative “no-update” model
which is a lesioned version of the normative model. This lesioned variant skips the first step:
it ignores the initial observation (βobs, Sobs). Instead, it relies on its prior of competence p(θ)
as its current belief when computing EIV. This prior is the same than the normative model.
It still uses the same Ideal Observer likelihood for simulating updates from performance on
a new question (βnew, Snew); it simply does not incorporate the initial observation before
selecting a query. Comparing the normative model to this no-update model tests whether
people adapt their search given the information presented.

4.2 Results

4.2.1 Confirmatory Analyses. In this discrete choice task, participants had to
choose a query among six possible options. Figure 6 describes the percentage of choice
for each query per observed question compared to the normative model’s predictions. To
test H1, that participants are more likely to select more informative questions, a mixed
multinomial logit model was estimated using the “mlogit” package (Croissant, 2020) with
participant’s choice of query as the dependent variable and the EIV for each query (com-
puted with the normative model) as the independent variable. A participant-level random
slope on EIV was added to allow the effect of EIV on choice to vary by individual. In
accordance with our hypothesis, participants chose high-EIV queries at a rate significantly
higher than chance (β = 0.22 ± 0.02, z = 9.42, p < .001). In other words, one standard
deviation increase in EIV increased the odds of selection by 24% on average. Participants
were quite variable in how optimal they were in choosing the most diagnostic question, with
an estimated standard variation in EIV slope between participants of 0.32 ± 0.04 (z = 8.59,
p < .001).

To test that participants take into account the information previously presented about
the individual they are evaluating (H2), we compared our normative model with an alter-
native “no-update” model which does not pay attention to the “observed question”. We
fitted a similar mixed multinomial logit model with the EIV predicted by the alternative
“no-update” model. Participants’s choice were not significantly correlated with this alter-
native estimate for EIV (β = -0.01 ± 0.02, z = -0.67, p = 0.501). Our normative model
explains the data better (BIC = 10501) than the “no update” model (10586).

4.2.2 Exploratory Analyses. We tested an alternative heuristic stipulating that
when participants observe a correct answer they select harder questions and conversely, they
select easier questions when observing an incorrect answer. We fitted another multinomial
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Figure 6 . Percentage of choice predicted by the softmax model (top row) compared to par-
ticipant’s average choice (bottom row), divided by theme and success. The query selections
made after the same observation are grouped together by a line and colored in function of
the difficulty of the observed question. Each data point corresponds to a pair of a query
and an observed question. Transformation of the raw difficulty is described in section 2.1.4.
The percentage of choice predicted by the model uses a softmax transformation with the
fitted inverse temperature parameter.

model with participant’s choice as the dependent variable and the predictor was simply
the difficulty of the query when observing a correct answer, and minus the difficulty when
observing an incorrect answer. We found that participants’ choices were significantly pre-
dicted by the heuristic (β = 0.23 ± 0.02, z = 10.62, p < .001). As before, participants
exhibited variation in how their choices followed the heuristic (β = 0.20 ± 0.04, z = 4.78,
p < .001). This heuristic model explains the data as well as the normative model (BIC =
10495).

In an exploratory analysis, we tested whether participants who observed difficult
questions (regardless of success) picked more difficult questions to ask, as predicted by
the normative Bayesian model. We fitted a linear mixed effect model with participants as
random intercepts and found that observing a difficult question was associated with selecting
more difficult queries (β = 0.13, t(2,759.87) = 7.52, p < .001). This result highlights that,
despite the heuristic model providing a similar fit to the data, there are aspects of the data
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that only the Bayesian model captures.

Study 3 shows that participants are able to flexibly query new information, in a way
that can be predicted by an optimal search model based on information theory. Query
selection increased with Expected Information Value, which provides convergent evidence
that people use Bayesian inference both when estimating others’ competence but also when
deciding which new information to acquire.

5 General discussion and conclusion

The capacity to infer the competence and knowledge of others is a core component of
social cognition. Our main focus was to test whether inferences about competence are
consistent with normative Bayesian reasoning but our paradigm also allows us to test
whether participants make judgments that approximate objective conditional probabili-
ties well. Studies 1 and 2 show that people can predict with a high degree of accuracy
the conditional probability that a person knows the answer to a trivia question from a
minimal amount of information–whether or not they know another piece of information.
These studies also provide evidence that inferences of competence are well approximated by
a Bayesian model which optimally integrates novel information with prior expectations. By
contrast, plausible heuristics, corresponding to lesioned versions of the Bayesian model, do
not account as well for most participants’ behavior. These two findings–accurate judgments,
and reliance on normative inferences–are relatively independent, as applying non-normative
heuristics sometimes results in accurate judgments, while normative inferences can produce
biased answers when the generative model or the parameters are not well calibrated.

Study 2 shows that participants’ inferences are well calibrated even when presented
with information about ignorance on a question. The uncertainty parameter ε was esti-
mated above zero for both studies (ε = 0.66 in Study 1; ε = 0.69 in Study 2), indicating
that participants’ inferences take uncertainty into account when estimating conditional
probabilities rather than assuming a deterministic mapping. Our results therefore suggest
that participants are able to infer others’ knowledge in a nearly optimal manner.

The same Bayesian framework can also explain how people seek information. Study
3 shows that participants are able to flexibly query new information, in a way that can
be predicted by an optimal search model based on information theory. The probability
of selecting a query was influenced by the normative model Expected Information Value
(a measure quantifying the amount of information gained for each candidate query). This
result provides convergent evidence across distinct tasks that people use Bayesian inference
when estimating others’ competence.

A large body of research has shown that humans systematically deviate from ra-
tional norms when reasoning under uncertainty (Kahneman, 2011; McDowell & Jacobs,
2017; Tversky & Kahneman, 1983). From this perspective, our results are surprising. Past
research has identified several factors that improve statistical reasoning, like presenting in-
formation in a natural frequency format (Cosmides & Tooby, 1996; Gigerenzer & Hoffrage,
1995; McDowell & Jacobs, 2017). Most relevant to our findings, Krynski and Tenenbaum
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(2007) have shown that people are more likely to follow sound principles of statistical rea-
soning when they are given a clear causal model that explains the statistical relations they
have to reason about (see also Tversky & Kahneman, 1980). In our experiments, we did
not explicitly provide a causal model to participants, but their good performance provides
some evidence that they may have spontaneously used a generative model of the relationship
between competence and performance in order to make inferences.

On the whole, performance was less in line with the Bayesian model in Study 3 than
in Studies 1 and 2. This difference might stem from the greater computational difficulty of
Study 3, in which participants would have to compare the potential outcomes of choosing
each potential query (also as a function of whether it would be answered correctly or not),
instead of only asking whether one specific question will be answered correctly. Moreover,
the Expected Information Values of each potential query were often similar. In such a
situation, it is not surprising that a heuristic (asking difficult questions after observing a
success, and easy questions after observing a failure) approximates participants’ behavior
(on the rationality of using heuristics for computationally demanding tasks, see Bramley et
al., 2015; Gigerenzer & Gaissmaier, 2011; Wu et al., 2017).

The Bayesian model accurately captures inferences of knowledgeability, a specific facet
of competence. We believe, however, that the model could be applied to other domains such
as estimating technical skills (e.g., using the difficulty of some mental operations to predict
numerical competence), or physical feats (e.g., using the effort put in weight lifting to
estimate overall strength). The current models could also be extended to the estimation of
competence or knowledge beyond the domain in which the performance has been observed–
for instance, what to do if we have to guess someone’s knowledge of astronomy knowing
they have correctly answered a question about superheroes?

The present studies have a number of limitations. As noted above, they only test
participants’ estimations of one form of competence (knowledgeability) and within specific
domains–using knowledge of American history, for instance, to infer broader knowledgeabil-
ity on that topic. The information search task of Study 3 was also particularly difficult;
as many questions had similar Expected Information Values, an easier task might have
provided a fairer test of the optimal Bayesian model. Finally, these studies do not address
the question of how participants are able to estimate so accurately the difficulty of the
questions.

Our research opens new directions in understanding the fundamental mechanisms
of social cognition.While most of the literature on inferences of people’s competence has
focused on unreliable cues such as facial features, the present research shows that reliable
cues, even if they are minimal, allow participants to form very accurate estimations of
competence, in line with Bayesian principles. Future research could address the question
of how participants weigh reliable and unreliable cues when they have access to both, and
what models best account for this integration.
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