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Factive mindreading

Abstract

The capacity to represent the mental states of other individuals, known as Min-
dreading or Theory of Mind, is key to successful social prediction. We suggest that
cognitive systems for mindreading are resource-rational: they are optimized for gen-
erating good predictions about the behavior of other individuals, while not exceeding
the computational capacity of the mindreader. We explore this hypothesis in a sim-
ple formal model where we derive cognitive strategies that excel at social prediction
while minimizing cognitive effort. We find that it is often optimal for resource-limited
mindreaders to keep track of the facts that another agent also knows, instead of explic-
itly representing the content of the agent’s beliefs. When evaluated in mindreading
tasks, simulated agents that use this ‘factive’ strategy tend to make mistakes in the
same cases as non-human primates and young human children. Even agents that use
more sophisticated strategies avoid representing beliefs unless necessary. Our results
elucidate the computational principles underlying efficient social prediction, and ex-
plain many of the successes and failures of human and non-human mindreading from
first principles.

Keywords: theory of mind, knowledge, false belief, information theory, resource
rationality, social cognition
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1 Introduction

Predicting the behavior of other individuals is a key adaptive challenge for most or-
ganisms. The challenge of social prediction has been a key driver of the evolution of
Theory of Mind, or ‘mindreading’: the ability to represent the latent mental states of
others. This capacity has been extensively studied across multiple domains, including
its evolutionary origins, development in children, neural mechanisms, and conceptual
structure [1-8].

Researchers have recently started to develop formal theories of mindreading at the
computational level [e.g. 7, 9, 10]. These theories typically use a normative modeling
approach; in a normative approach, one compares participants’ behavior to the predic-
tions of rational models that solve an information-processing problem in the optimal
way [11-13]. Specifically, recent theories of mindreading assume that mindreaders
have an internal causal model of the mental states of other agents, and can update this
model in an approximately Bayesian way [7]. This approach has been successful for ex-
plaining the successes of mindreading in human adults and children across many tasks
[7, 10, 14].

However, a normative approach is less well suited to explaining the patterns of sys-
tematic mistakes that participants—especially younger children and non-human animals—
make in mindreading tasks [1, 15]. Consider for example the following setting: a char-
acter named Sally puts a ball in a basket, and then goes away. While Sally is away, Anne
removes the ball from the basket and puts it in a box. When Sally comes back, where
will she look for the ball? This task requires the participant to predict the behavior of an
agent whose belief (the ball is in the basket) does not match reality (the ball is now in
the box). Human children younger than four typically answer incorrectly ([15, 16], but
see [3, 17]). Variants of the task adapted for non-human animals show that non-human
primates also struggle to represent false beliefs ([18-20], but see [21-24]). These find-
ings are difficult to explain in formal models that assume that mindreaders engage in
approximately optimal computations [7, 10]. Several computational models have been
developed to explain difficulties in mindreading [25-29], but these models typically can
explain a limited range of findings, and often make relatively strong assumptions about
cognitive architecture.

In this paper, we develop a computational approach that can account for both the
successes and limitations of mindreading, building from first principles. Like many
existing models, we take a normative approach, asking how a well-designed cognitive
system for mindreading would work. However, we also consider how this cognitive
system would deal with limitations in computational resources. From this perspective,
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systematic mistakes can be understood as resulting from cognitive ‘shortcuts’ that save
computation [30].

Formally, we conduct a resource-rational analysis of mindreading in a simple model
of social prediction. In a resource-rational analysis, researchers seek to derive the opti-
mal policy for solving an information-processing problem, under the constraint that this
policy has to be executed by an agent with limited computational resources [30-32].
Here we consider a large space of possible policies for social prediction, and find the
policies that optimize predictive performance under computational resource constraints.
This process allows us to study social prediction policies that have been ‘designed’ by
a normative optimization process, rather than hand-coded by a researcher.

To preview our results, we find that the optimal policy for mindreading depends on
the amount of computational resources available to the mindreader. Mindreaders with
high resources use a meta-representational strategy: they represent the beliefs of the
other agent [33, 34]. Mindreaders with more limited resources adopt a factive strategy,
simply tracking what the other agent knows [1, 35-37]. Importantly, mindreaders using
a factive strategy make systematic mistakes in the same situations as non-human pri-
mates, young human children, and human adults under cognitive load ([16, 20, 38, 39],
for review see [35, 40]). This similarity suggests that mistakes in mindreading tasks
stem from the use of cognitive strategies that are optimally designed to save computa-
tion at the expense of accuracy [30].

The difference between meta-representational and factive mindreading can be un-
derstood as follows. Observers that use meta-representations are constructing a model
of the way another agent models its environment. For example, if Alice and Bob are in
a room, Bob’s world model might contain the information that ‘there is an apple on the
table’, and Alice can meta-represent that ‘Bob thinks: “there is an apple on the table™’,
see Figure 1A. This approach is very flexible, because it can accomodate cases where
Bob has a different belief than Alice. For example if Bob mistakenly thinks that there
1s an orange on the table, Alice can meta-represent ‘Bob thinks: “there is an orange on
the table”” while simultaneously representing in her own world model that the fruit on
the table is an apple. At the same time, meta-representation can be extremely costly in
computational terms [41]. Consider just the memory demands: storing another individ-
ual’s complete model of the world could in principle require as much memory as your
own model of the world.

Factive mindreading is a simpler strategy. Consider again Alice and Bob, in the
same room: they share much of their knowledge about their environment, such as seeing
an apple on the table. Alice can store ‘there is an apple on the table’ in her own world
model, and add a simple tag noting that Bob also has access to this fact (Figure 1 Right;

Page 4



Factive mindreading

[37]). This simpler strategy is called ‘factive’ because it represents relations between
the other agent and true facts about the world [35, 42].

Factive mindreading is less flexible than meta-representation: it only allows Alice
to represent Bob as knowing or ignoring a fact. So, Alice cannot represent Bob as
having a different belief than hers. But by avoiding duplicate representations of the
shared environment, factive mindreading comes at a significantly lower computational
cost. Here we show that factive mindreading can in fact be the optimal cognitive policy
for an organism with limited computational resources. This result provides a norma-
tive explanation for a wide range of empirical findings about human and non-human
mindreading.

A

@) o
Nonfactive . Factive.
mindreading mindreading

Figure 1: Difference between nonfactive and factive mindreading (adapted from [37]).
A: The mindreader (blue) represents a fact (the apple is on the table) in its primary rep-
resentation of the world, and also represents the other agent (pink) as representing that
there is an apple on the table (a meta-representation). B: A factive mindreader simply
tracks whether the other individual has epistemic access to a fact in the mindreader’s
world model.

Our computational approach allows us to model social cognition without relying
on folk-psychological concepts. Following previous work, we still use some folk-
psychological language for ease of exposition. Specifically, for convenience we say that
factive mindreaders represent what other agents know instead of what they believe [40].
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For our purposes, ‘knowledge’ denotes two important properties: agents can only know
things that are true, and accidentally true beliefs do not count as knowledge [42, 43]. In
contrast, the content of an agent’s belief is a proposition like ‘the apple is on the table’.
We operationalize computational limitations in information-theoretic terms, as a
bound on how much information the observer is able to extract from the environment.
The advantage of this approach is that it allows us to remain agnostic with respect to
particular implementation or substrate details—since information-theoretic constraints
can be interpreted in multiple ways, such as limitations on inference or memory [44].
Information-theoretic principles have been widely used in models of resource-rational
cognition [45-61]. They offer a principled way to model cognitive resource limitations
in the abstract, without making strong assumptions about cognitive architecture [44].

2 Modeling framework

We consider an observer who has to predict the behavior Y of an actor—for example
the observer must predict where the actor will look for an apple. The observer has access
to a stream of data X from the world, some of which is relevant to predicting the actor’s
behavior (information about the actor’s location, gaze direction, etc). An observer with
limited cognitive resources cannot process in detail all the information contained in the
incoming sensory data, so they need to construct a compressed representation 7, that
they will then use to predict Y. Ideally, Z extracts the information in X that is most
relevant to the task of predicting the other individual’s behavior (Figure 2 lower-right).
This problem can be formalized using the information bottleneck [62], a framework
closely related to rate-distortion theory [63]. In an information bottleneck problem, we
seek to construct an optimal encoder from X to Z. Formally, an encoder is a conditional
probability distribution ¢(z|¥) that specifies the probability that the observer will form
the representation Z = z given that the state of the world is X = 7, for all possible
values of 7 and z.
The computational capacity of the observer is defined as an upper bound on the
mutual information between X and Z:
S . Pr(Z, 2)
I(X;2) =) Pr(i,2)log e (1)

=
T,z

where Pr(¥,z) = q(z|Z)Pr(Z). Intuitively, this value quantifies the amount of infor-
mation that compressed representation Z can ‘preserve’ about the input data X. Given
this upper bound on mutual information, the goal is to find an encoder that, on average,
yields the representation Z that is most useful for predicting the actor behavior Y.
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Step 1: item is placed into box b, uniformly at random. This is visible to actorE
the actor if A=1, and hidden if A=0; it is always visible to the observer. observerE

item @
“ “

=0

Step 2: if D=1, the item is swapped into a new random box s (which can
equal b). This is not visible to the actor, but is visible to the observer.

B s B B« B

Step 3: the actor chooses a box Y, and is rewarded if this box contains the
item (Y=s). The observer tries to predict which box the agent will go to.

Ignorance (A=0, D=0) Knowledge (A=1, D=0)

X ={A,D, B}

encoding: g(z|Z)

Y Y
S

N E - E
False belief (A=1, D=1) Gettier (A=1, D=1
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Figure 2: Social prediction task and theoretical framework. Steps 1 to 3 describe the
dynamics of the task. In Step 3, green shading indicates the box(es) that the actor is
most likely to go to in each case; thought bubbles represent where the actor thinks the
item is. Lower right: information bottleneck model. X represents information in the
world relevant to mindreading, such as what the actor (pink) can and cannot see. The
observer (blue) constructs a compressed representation Z on the basis of X, and also
has access to additional representation S which reflects the world state (i.e. the true
item location). The observer then uses Z and S to make a prediction Y about the actor’s
box choice Y. Page 7
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Crucially, we assume that the observer also has a representation S of the state of
the physical world, because this representation is generally useful even outside of the
context of social prediction. For example, the observer tracks the true location of the
apple because they may want to eat it themselves. We assume that the information-
theoretic costs of building representation S have already been paid by the observer, so
that it can effectively be re-used for free in the social prediction task. We can then
re-frame the task as that of predicting Y from Z and S jointly (see Figure 2 lower-
right), with the usefulness of Z quantified as the additional predictive power that it
gives the observer about Y, given that the observer already represents S. This quantity
is operationalized as a conditional mutual information:

I(Y;218)=1(Y;2,8) = 1(Y;5) (2)
In sum, we are looking for the optimal encoder:

qc(2|7)" = arg max 1(Y; Z|S) (3)
q

subject to I(X; Z) < C

where C'is the upper bound on the amount of information the observer can extract from
X. Given the conditionalization on S, our problem is an instance of the conditional
information bottleneck, and we solve it using a variant of the Blahut-Arimoto algorithm
[62, 64, 65] given by [66], see Supplementary Information.

Importantly, we are not arguing that resource-rational mindreaders are solving Equa-
tion 3 themselves. Instead, resource-rational analysis takes the perspective that the con-
strained optimization problem has been approximately solved over time by evolution-
ary, developmental or learning processes, and that the observer is simply executing the
resulting policy [30]. For simplicity we focus on the cognitive costs involved in con-
structing representation Z, but not in the costs involved in deriving a prediction from Z
(following e.g. [51, 67]; but see Supplementary Information for preliminary analysis of
decoding costs). Therefore we assume that the observer predicts behavior Y with the
Bayes-optimal decoder ¢(g|z, s).

2.1 Task

We study the resource-rational mindreading problem in a simple task in which the ob-
server must predict the behavior of an actor.
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2.1.1 Actor’s task.

The actor faces N opaque boxes. One of these boxes B is selected uniformly at random,
and a valuable item (such as the apple in our earlier example) is placed into box B. The
actor will have to choose a box and gets reward r if it picks the box containing the item,
and 0 otherwise, see Figure 2.

With some probability Pr(A), the actor has perceptual access and can see in which
box the item is initially being placed (i.e. it can see which box is selected as B). Oth-
erwise (with probability 1 — Pr(A)), the actor is ignorant and receives no information
about the item’s location.

With probability Pr(D), we then switch the item to a box S, selected uniformly at
random (this can be the original box B), always outside of the actor’s awareness. This
‘Deceiver’ event (D = 1) implies that any belief that the actor has formed might now be
false.!

We use S to denote the final location of the item; if the item did not get switched we
simply have S = B.

Following recent computational approaches to mindreading [7, 9, 10, 29], we as-
sume that the actor is approximately rational and seeks to maximize expected reward
given the information it has access to (see Supplementary Information). This means
that the actor chooses a box uniformly at random if it did not see where the item was
placed (A = 0). Otherwise (A = 1), it goes to the box where it last saw the item (box b),
although it may sometimes choose a different box by mistake.

2.1.2 Observer’s task.

The observer already has a representation of current location S of the item, and can
extract the value of A, D and B as input data from the environment; i.e. we have
X = {A,D,B}. The observer’s goal is to accurately predict where the actor will go,
that is, to accurately estimate the probability of each choice.

This simple setting allows us to explore different situations traditionally studied in
Theory of Mind research, including tasks where the observer must predict the behavior
of an actor with knowledge (A = 1, D = 0), false belief (A = 1, D = 1, s # b),
accidentally true belief (A = 1, D = 1, s = b), and ignorance (A = 0). Intuitively,
variable B represents the ‘content’ of the actor’s belief (assuming that A = 1), while A
and D determine whether the actor knows the item location (specifically, the actor has
knowledge if A =1and D = 0).

“Deception’ is not meant to imply that there is another agent who is strategically acting to manipulate
the actor’s beliefs.
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Below we derive the resource-rational observer policies for this task, using the
framework outlined in the previous section, and investigate their properties. We call
the combination of parameters Pr(A), Pr(D) and N the social ecology; in addition to
these, we also vary the computational capacity C of the observer. In a given simulation,
the values of parameters Pr(A), Pr(D), N and C are fixed, and the resource-rational
policy is optimized for its expected performance across all possible settings of A, D, B
and S (the probability of each setting is determined by the social ecology). Note that
different social ecologies can in principle favor different resource-rational policies; in
this sense resource-rational policies are ecologically rational [68, 69].

We predict that an observer that can only dedicate limited resources to constructing
Z should focus these limited resources on encoding information that is least likely to be
redundant with S. From this perspective, encoding the content B of the actor’s belief
(‘the apple is in box 3) can be wasteful, because this information is typically already in
the observer’s own representation S. Instead, the observer can encode the value of A and
D: whether the actor ‘knows’ the location of the apple. We therefore define as factive
a policy that 1) extracts little or no information about B, ii) extracts relatively more
information about A and D. We measure the information extracted about a variable as
the mutual information between the variable and compressed representation Z. Code
for implementing our model is available on the Open Science Framework.

3 Results

We find that factive mindreading emerges as the optimal cognitive strategy across a
non-trivial portion of the parameter space, see Figure 3B. In many social ecologies,
resource-rational observers with low computational capacity extract substantially more
information about the knowledge-relevant variables A and D than the belief-relevant
variable B. Figure 3A illustrates this pattern for one example social ecology: observers
with low computational capacity extract information about A and D but not about B,
which is only represented by observers above a certain capacity threshold.

We can explore the representations formed by factive observers by visualizing the
mapping from X to Z to Y in observers that extract no information about B. A detailed
example is given in the Supplementary Information (Figure S3). Here we give a high-
level overview of this content, showing an idealized depiction of the mapping performed
by factive vs meta-representational observers (Figure 4). We find that factive observers
have a representation Z that can be in only two possible states: the observer either
represents the actor as being Ignorant (whenever A = 0 or D = 1) or Knowledgeable
(whenever A = 1 and D = 0). Correspondingly, the observer predicts that an Ignorant
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Figure 3: A: Amount of information that resource-rational observers extract from
knowledge-relevant variables A and D (blue), and belief-relevant variable B (orange),
as a function of the observer’s computational capacity C, shown here for N = 3,
Pr(A) = .2, Pr(D) = .05. Each point on the x-axis corresponds to a different resource-
rational observer. Information extracted is normalized such that 1 represents the amount
of information extracted by the observer with the largest computational capacity. B:
Prevalence of factive policies across parameter space, shown for N = 3. Red dot cor-
responds to parameters used in panel A. Factive policies are prevalent in ecologies in
which the likelihood Pr(D) of an unwitnessed transfer is low, and the likelihood Pr(A)
that the actor witnesses the original hiding is low-to-intermediate. Factivity is computed
as the maximum value of /(A, D; Z) — I(B; Z) across values of C, normalized as in A.
Intuitively, the brightness of a tile indicates how much higher than the orange line the
blue line can get in a plot such as in panel A—see dashed line. In control simulations,
the observer does not have a pre-existing representation of S.

actor might go toward any box, and predicts that a Knowledgeable actor will go to box
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S (the box that actually contains the item).

In contrast, in social ecologies with high values of Pr(D) and Pr(A), or for ob-
servers with high computational capacity, the resource-rational policy is closer to a
meta-representational policy. The lower panel on Figure 4 is an idealized depiction
of a meta-representational policy. The observer represents the content of the actor’s
beliefs, like the belief that the item is in box 1. The representation Z extracts all the
available information about B (/(B; Z) is high), and the observer does not use its own
representation of the state of the world S.

Input (X) Representation (Z) Prediction (Y)

A) o Chooses
= doml
: andomy
O
“ |A=1,D=0 |—>{Knowledge |—>|Goes to box S |
B) &
g 8 [A=1,B=1 Belief1  —>{Goes to box 1 |
= % |A=1, B=2 Belief2  —>| Goes to box 2 |
@_ |A=1, B=3 Belief 3 )—)’ Goes to box 3 \

Figure 4: Schematic description of the X — Z — Y mapping in a factive observer (A)
and a meta-representational observer (B), shown for N = 3. The meta-representational
observer in the state A = 0 maintains a uniform probability distribution over the three
possible belief states. Note that actual policies are typically more stochastic than these
simplified mappings, see Figure S3.

Figure 3B shows the prevalence of factive mindreading across social ecologies. Fac-
tive mindreading is especially prevalent for low values of Pr(D) and low-to-intermediate
values of Pr(A). The likelihood of a false belief is equal to Pr(A)Pr(D), and factive
policies make sub-optimal predictions when the actor has a false belief, since in this case
the item location S is not sufficient to predict what the actor will do. Factive mindread-
ing is also more prevalent with increasing N (see SI), because the information-theoretic
cost of extracting B increases with the number of possible beliefs the actor could have.
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3.1 Experiments

Here we take a closer look at the performance of resource-rational observers by per-
forming ‘in-silico’ experiments in our mindreading tasks. We also compare these re-
sults to existing empirical findings in similar tasks in human and non-human primates.
We present results for three observers, a representative each of an ‘automatic’ policy
(C = 0), alow-resource- (C' = .5), and a high-resource observer (C' = 1). The automatic
policy cannot extract any information from the input data and is therefore ‘blind’ to
differences between tasks. The low-resource observer is of special interest because it
1s a factive mindreader, as can be seen in Figure 3A. To generate the predictions of an
observer, we compute Pr(Y|X, S) by marginalizing over Z:

Pr(V|X,S) =) q(V|Z 8)q(Z|X) 4)
Z

We use a social ecology with N = 3 boxes, Pr(A) = .2 and Pr(D) = .05, and report
experiments for other social ecologies in the Supplementary Information.

3.2 Predicting behavior

In our main series of tasks, the observer has to predict which box the actor will reach
toward. In Experiment 1, the observer must predict the behavior of an actor who
knows the location of the item (A = 1, D = 0, upper-left on Figure 5). We find that
all observers correctly predict that the actor will reach for the box containing the item,
although this inference is stronger in observers with more cognitive resources. This
result mirrors experiments in adults, children, and non-human primates; individuals
from these populations can attribute knowledge, but human adults do so more reliably
[18, 20, 29, 40, 70, 71].

In Experiment 2, the observer predicts the behavior of an actor who has a false
belief (A = 1, D = 1, and b # s, upper-right on Figure 5). Only the high-resource
observer correctly predicts that the actor will reach for the item where it last saw it. The
low-resource observer is mostly agnostic, maintaining an almost uniform distribution
over boxes, with only a slight bias toward the actual location of the item.? This pattern

’This bias emerges for the following reason. An observer who encodes no information about X
should have a bias toward the reward’s actual location, because when averaging across tasks the actor
goes toward the reward’s location more often than toward other locations. The low-resource observer
encodes some information about X, but this encoding is unreliable; so even in a false belief task a slight
bias toward the reward location subsists.
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again reflects experimental results: human adults can pass false belief tasks while non-
human primates often fail them ([18, 19, 40, 72], but see [21-24]). Moreover, non-
human primates fail false-belief tasks in the same way as the low-resource observer:
they find each outcome equally surprising, including seeing the actor go toward a box
where the item was never located [38]. Young human children also struggle with false
belief tasks, although they fail in a slightly different way than the low-resource observer,
because they predict that the actor will look for the item at its actual location ([16], see
also [26]).

In Experiment 3, the actor is ignorant (A = 0, lower-right in Figure 5). The high-
resource and low-resource observers correctly predict that the actor might go toward any
box. Young human children and non-human primates similarly make different predic-
tions depending on whether the agent is knowledgeable or ignorant [73—75], although
children’s predictions about ignorant agents are sometimes biased [76, 77]. See also
Supplementary Information for more discussion on the implications of our results for
theories of ignorance representation.

Experiment 4 has the structure of a ‘Gettier case’ in epistemology [43]. Outside
of the actor’s awareness, the item is removed from its original box but then put back
in exactly the same box; as a result the actor has an accidentally true belief (A = 1,
D =1, s = b, upper-right on Figure 5). While the high-resource observer succeeds at
the task, the low-resource observer expects that the actor might look at any location.
The pattern of results for the low-resource observer is similar to that of non-human
primates [20, 71], who also fail to represent an actor’s belief if that belief is true only
by luck. Similar patterns have been observed in human children ([20, 78, 79], but see
[80D.

A striking finding from Experiment 4 is that the low-resource observer performs
worse than the automatic policy, despite having higher computational capacity. The
low-resource observer defaults to a near-uniform distribution whenever the actor lacks
perceptual access to an event; this is usually a good strategy but it backfires in a Gettier
case, where a simple bias toward the item’s actual location actually does a good job of
predicting the actor’s behavior.

3.3 High-resource observers flexibly switch between knowledge and
belief representation.

High-resource observers in our simulations successfully pass false belief and Gettier
tasks. This finding might indicate that high-resource observers implement a fully meta-
representational strategy: they encode the content B of the other agent’s belief whenever
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Figure 5: Predictions made in our experiments by resource-rational observers with dif-
ferent computational capacity. ‘Actual’: actual location s of the item; ‘Initial’: initial
location b of the item. Dashed lines represent the ideal non resource-limited policy.
Parameters used were N = 3, Pr(A) = .2, Pr(D) = .05.

that agent has perceptual access (A = 1), see Figure 4 lower panel. Alternatively, high-
resource observers might use a flexible strategy: they only encode the content of the
actor’s belief when the actor was deceived, i.e. when A = 1, D = 1, and track the actor’s
knowledge otherwise. This strategy allows an observer to perfectly predict behavior,
while potentially saving cognitive resources.

To assess which strategy more closely describes high-resource observers in our sim-
ulations, we computed the amount of information that an observer extracts about vari-
ables A, D and B, relative to the maximum possible information that can be extracted
about that variable (its Shannon entropy). For high values of Pr(D), high-resource ob-
servers approximate a fully-metarepresentational strategy, extracting a high portion of
the available information about B. In contrast, for low values of Pr(D), high-resource
observers approximate a fully-flexible strategy: they represent knowledge by default,
and only encode the content of an actor’s belief when this actor has a false or acciden-
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tally true belief (Figure S4).

3.4 Learning about the world

In the Supplementary Information, we report additional experiments investigating the
performance of factive mindreaders in a simple social learning task (inspired by [40,
72]). We show that the representations optimized for our first task (predicting behavior
from the state of the world), can also be co-opted for predicting the state of the world
from observation of another individual’s behavior.

3.5 Control simulations

We claim that factive mindreading can be adaptive because observers are already repre-
senting the state of the world S, and so can use this information at no extra cost for pre-
dicting others’ behavior. In the Supplementary Information we report a complementary
set of simulations where we abandon this assumption, and find that factive mindread-
ing does not emerge when observers must pay the additional cost of representing S for
mindreading-specific purposes—showing that this assumption is indeed essential to our
results.

4 Discussion

Social prediction is a key adaptive challenge for many organisms. This challenge has
been a key driver of the evolution of cognitive systems for ‘mindreading’, the ability
to represent the mental states of other individuals. There has been considerable debate
about the development of mindreading in humans, and the extent of its sophistication
in other species [1-3, 16]. Explaining how mindreading works across ages and species
requires reconciling two prima facie contradictory phenomena. On the one hand, min-
dreading seems highly imperfect: in some populations (like non-human primates and
young human children) mindreaders make systematic patterns of mistakes that suggest
the absence of a capacity to represent beliefs [1, 15, 16, 20, 71]. On the other hand, min-
dreading seems to function well: young human children and non-human primates are
quite adept at predicting the behavior of others outside of contrived situations involving
false beliefs [20, 35, 40, 70, 81]. Moreover, the best existing computational accounts
of mindreading in human adults assume that mindreaders make approximately rational
inferences [7, 10, 14].

Page 16


https://osf.io/y6jz5/files/nk267?view_only=4fd27e8e3007470089068e82c983bd34
https://osf.io/y6jz5/files/nk267?view_only=4fd27e8e3007470089068e82c983bd34

Factive mindreading

Here we present a simple formal model that reconciles these two sets of observa-
tions, explaining the successes and limitations of mindreading from first principles. We
suggest that cognitive systems for mindreading are subject to a trade-off between ac-
curacy and tractability: they need to generate good predictions about the behavior of
other individuals, while not exceeding the computational capacity of the mindreader
[30]. From this perspective, the optimal cognitive policy depends on the computational
resources that the mindreader can dedicate to the task of social prediction: mindreaders
with fewer resources need to trade accuracy for computational efficiency, resulting in
systematic mistakes.

In a simple social prediction task, we derived the optimal cognitive policy for min-
dreading across different social ecologies. Our key finding is that for mindreaders with
low computational capacity, it might not be optimal to explicitly represent the beliefs
of the other agent. In social ecologies where agents rarely acquire false beliefs, low-
capacity mindreaders are better off simply tracking the facts that the other agent knows.
This factive strategy occasionally generates the wrong predictions, but this inaccuracy
1s compensated by the computational savings that come from representing knowledge
instead of belief. As other researchers already emphasized, the use of a factive strategy
can explain many findings about mindreading in young human children and non-human
primates [1, 35, 40].

Crucially, factive mindreading explains not only why individuals in these popula-
tions struggle in false belief tasks, but also their overall accuracy in more natural tasks
that do not involve deception [20, 40, 70, 81]. Our approach can also explain the good
performance of human adults, under the assumption that they can assign a lot of com-
putational power for mindreading. In sum, the pattern of successes and mistakes in
mindreading across ages and species might be explained in a unified way: organisms
execute policies that are optimally designed for good predictive performance under cog-
nitive constraints, and these constraints vary across ages and species. This proposal is
consistent with the fact that human adults tend to have higher information-processing
capacity than human children and other primates [82].

More speculatively, our framework might also explain why success in false belief
tasks has been reported more often in great apes than in monkeys [21, 22, 24]. Great
apes have larger information-processing capacity than monkeys [83] and might be able
to deploy meta-representational strategies more easily. In general, the resource-rational
perspective presented here predicts that signatures of meta-representational mindread-
ing will be found more often in species with higher information-processing capacity,
even among closely related species. Systematic tests of this prediction are a fruitful
avenue for future research.
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4.1 The logic of factive mindreading

Factive mindreading saves computational resources by exploiting the substantial over-
lap that exists between a mindreader’s world model and that of other agents in the same
environment. In virtue of living in a shared world, individuals tend to have similar
world models. This overlap allows a mindreader to predict another agent’s behavior
by keeping track of which facts in the mindreader’s own world model are also in the
other agent’s world model. Our simulations confirm that this overlap between indi-
viduals’ world models is key to the emergence of factive mindreading. First, factive
mindreading did not emerge in social ecologies where individuals often have false be-
liefs (which diverge from the mindreader’s world model). Second, factive mindreading
did not emerge when the mindreader cannot use its own world model for the purpose of
social prediction.

Our perspective gives a principled explanation for why false belief tasks are diffi-
cult. Namely, resource-rational policies for mindreading are optimized for good per-
formance in situations that occur frequently, and cases of deception are relatively in-
frequent. Therefore factive mindreaders use ecologically valid cues (like perceptual
access) to track what an agent knows, but do not explicitly represent beliefs. This per-
spective makes a surprising prediction: mindreaders might find it hard to predict the
behavior of an agent with a true belief if that true belief does not meet the input condi-
tions to be represented as knowledge [1, 35, 40]. In our simulations, this situation arises
in experiments that involve accidentally true beliefs, mirroring the structure of ‘Gettier’
cases in epistemology [43]. In these experiments, the actor sees an item placed in a box
and then goes away. The item is then taken out of the box, but is subsequently put back
in the same box. A factive mindreader observing this situation will initially represent
the actor as knowing the item’s location. When the item is removed from its location
outside of the actor’s awareness, the mindreader discards this knowledge attribution and
represents the actor as ignorant. Once the knowledge attribution is discarded, there is
no way to re-create it when the item is put back in its original location. Therefore, the
factive mindreader fails to reliably predict that the actor will go toward the item’s actual
location.

Crucially, experiments with this exact structure have been conducted in non-human
primates, revealing that chimpanzees and rhesus macaques fail to reliably predict the
behavior of individuals with an accidentally true belief, even though they succeed in
closely matched situations where the individual has actual knowledge [20, 71]. In sum,
non-human primates in these experiments perform like the factive mindreaders in our
simulations. We find other points of convergence between non-human primates and our
factive mindreaders: for example they find each outcome equally surprising in a false-

Page 18



Factive mindreading

belief task, including seeing the agent go toward a box where the item was never located
[38].

4.2 Competence and performance

We explain the difficulty of belief attribution tasks from an abstract normative perspec-
tive. This ultimate-level explanation [84] is compatible with different explanations at
the proximate level [3, 80, 85]. On one hand, belief attribution might be difficult be-
cause of a competence problem: a participant might fail a task because they do not
have the capacity to represent beliefs. On the other hand, performance issues, like dif-
ficulty understanding a question, cognitive load, or lack of ecological validity, might
mask the participant’s competence. Supporting the performance interpretation, hu-
man infants and non-human primates can pass false belief tasks under some conditions
[3, 17, 21, 22, 86], although the interpretation of these results is debated [3, 21, 87-90].
From our perspective, the interesting phenomenon is that belief attribution is in gen-
eral more difficult than knowledge attribution: performance factors that might interfere
with belief attribution do not seem to interfere with knowledge attribution to nearly the
same extent [39, 40]. This pattern is consistent with our claim that knowledge attribu-
tion tasks can be passed while deploying fewer cognitive resources. A mindreader that
is in principle capable of belief attribution might sometimes default to a simpler factive
strategy depending on the amount of cognitive resources they currently have at their dis-
posal [91]. This might happen when task demands (e.g. the need to interpret a complex
verbal question) limit the resources that can be attributed to mindreading proper.

4.3 Hybrid strategies for mindreading

Our results are also relevant to understanding mindreading in human adults. Consider
that high-resource observers in our model often use a hybrid strategy that blends meta-
representation and factive representation. They represent knowledge by default, and
only encode the content of the actor’s belief when a knowledge representation would
not allow them to accurately predict behavior (cases of false or accidentally true belief).
Human adults might use a similar strategy. Supporting this hypothesis, people can
engage in mental state inference in contexts like conversation that require quick and
spontaneous mindreading [37], even though they find it difficult to compute beliefs in
these same contexts [92]. Convergent evidence comes from tasks that require people
to make explicit knowledge or belief judgments [93, 94]. When people are asked what
an agent knows, they respond either as fast or faster than when they are asked what
the agent believes [93, 94]. This is the reverse of what one would predict if human
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adults used a purely meta-representational strategy (under this hypothesis, people would
judge whether an agent knows something by first computing the agent’s belief, and then
assessing whether this belief matches reality). Similarly, neural activity in knowledge
attribution tasks does not exhibit the signatures of inhibitory processing found in belief
attribution tasks [93, 95].

4.4 Limitations and directions for future research

Because we set out to explain qualitative empirical patterns in mindreading from norma-
tive principles, we kept our model as simple as possible. So, by design we made very
few assumptions about details of cognitive architecture, and used the abstract frame-
work of information theory to operationalize cognitive costs [62]. Our model leaves out
many factors that might influence performance in mindreading tasks, like altercentric
biases in infancy or difficulty understanding questions in childhood [80, 96]. As a pre-
dictable consequence, there are empirical regularities that our model does not capture.
For example young children tend to fail false belief tasks differently than our model:
they predict that the agent will look for the item in its actual location [16]. Factive ob-
servers in our model have a slight bias toward the actual location of the item, but this
bias is probably too small to fully account for the magnitude of this effect in young chil-
dren. In our simulations, factive mindreading is prevalent in ecologies where ignorance
is relatively common, and ignorant agents often do not reach for the actual location of
the item; as a result a very strong actuality bias is not adaptive in these ecologies.

Future research should extend our approach to a broader range of tasks. Our anal-
ysis focuses on a classic experimental paradigm where false beliefs are caused by un-
witnessed changes in location. Other situations can create challenges for mindreading:
false beliefs can for instance be caused by mis-perception. Mindreading can also in-
volve inferring the goals and desires of an agent [4, 9]. A promising direction for future
research is to apply our framework to goal inference tasks, and explore the connections
between our approach and existing resource-rational models of goal inference [97-99].
While we focus on social prediction, mindreading can also be deployed with the goal
of influencing the behavior and mental states of other agents [100, 101].

Finally, while we focus on the distinction between knowledge and belief representa-
tion, the general principle we identify here is much broader. On our account, mindread-
ers save computational resources by representing some parts of their own world model
as being shared by another agent. In the setting we use here these parts of the world
model are facts about the world, but in principle they can be other things, such as con-
cepts. For instance Alice might assume that Bob’s concept of APPLE is the same as her
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own, instead of creating a meta-representation of Bob’s concept of APPLE. We suspect
that much of social cognition relies on such strategies, and that meta-representation is
the exception rather than the norm.

References

[1] Martin A, Santos LR. What cognitive representations support primate theory of
mind? Trends in cognitive sciences. 2016;20(5):375-82.

[2] Premack D, Woodruff G. Does the chimpanzee have a theory of mind? Behav-
ioral and brain sciences. 1978;1(4):515-26.

[3] Baillargeon R, Scott RM, Bian L. Psychological reasoning in infancy. Annual
review of psychology. 2016;67(1):159-86.

[4] Gergely G, Csibra G. Teleological reasoning in infancy: The naive theory of
rational action. Trends in cognitive sciences. 2003;7(7):287-92.

[5] Saxe R, Kanwisher N. People thinking about thinking people. The role of the
temporo-parietal junction in “theory of mind”. Neurolmage. 2003;19(4):1835-
42.

[6] Richardson H, Lisandrelli G, Riobueno-Naylor A, Saxe R. Development of
the social brain from age three to twelve years. Nature communications.
2018;9(1):1027.

[7] Baker CL, Jara-Ettinger J, Saxe R, Tenenbaum JB. Rational quantitative attri-
bution of beliefs, desires and percepts in human mentalizing. Nature Human
Behaviour. 2017;1(4):0064.

[8] Quillien T, German TC. A simple definition of ‘intentionally’. Cognition.
2021;214:104806.

[9] Lucas CG, Griffiths TL, Xu F, Fawcett C, Gopnik A, Kushnir T, et al. The child as
econometrician: A rational model of preference understanding in children. PloS
one. 2014;9(3):€92160.

[10] Jara-Ettinger J. Theory of mind as inverse reinforcement learning. Current Opin-
ion in Behavioral Sciences. 2019;29:105-10.

Page 21



Factive mindreading

[11] Marr D. Vision: A computational investigation into the human representation
and processing of visual information. MIT press; 1982.

[12] Anderson JR. The Adaptive Character of Thought. Psychology Press; 1990.

[13] Cosmides L, Tooby J. Beyond intuition and instinct blindness: Toward an evolu-
tionarily rigorous cognitive science. Cognition. 1994;50(1-3):41-77.

[14] Jern A, Lucas CG, Kemp C. People learn other people’s preferences through
inverse decision-making. Cognition. 2017;168:46-64.

[15] Rakoczy H. Foundations of theory of mind and its development in early child-
hood. Nature Reviews Psychology. 2022;1(4):223-35.

[16] Wimmer H, Perner J. Beliefs about beliefs: Representation and constraining
function of wrong beliefs in young children’s understanding of deception. Cog-
nition. 1983;13(1):103-28.

[17] Onishi KH, Baillargeon R. Do 15-month-old infants understand false beliefs?
Science. 2005;308(5719):255-8.

[18] Marticorena DC, Ruiz AM, Mukerji C, Goddu A, Santos LR. Monkeys
represent others’ knowledge but not their beliefs. Developmental science.
2011;14(6):1406-16.

[19] Martin A, Santos LR. The origins of belief representation: Monkeys fail to auto-
matically represent others’ beliefs. Cognition. 2014;130(3):300-8.

[20] Kaminski J, Call J, Tomasello M. Chimpanzees know what others know, but not
what they believe. Cognition. 2008;109(2):224-34.

[21] Krupenye C, Kano F, Hirata S, Call J, Tomasello M. Great apes antic-
ipate that other individuals will act according to false beliefs.  Science.
2016;354(6308):110-4.

[22] Kano F, Krupenye C, Hirata S, Tomonaga M, Call J. Great apes use self-
experience to anticipate an agent’s action in a false-belief test. Proceedings of
the National Academy of Sciences. 2019;116(42):20904-9.

[23] Lurz RW, Krachun C, Mareno MC, Hopkins WD. Do chimpanzees predict
others’ behavior by simulating their beliefs? Animal Behavior and Cognition.
2022;9(2):153-75.

Page 22



Factive mindreading

[24] Padberg M, Hanus D, Haun D. Great apes show altercentric influences when
confronted with conflicting beliefs. Animal Behaviour. 2025;227:123304.

[25] O’Laughlin C, Thagard P. Autism and coherence: A computational model. Mind
& Language. 2000;15(4):375-92.

[26] Berthiaume VG, Shultz TR, Onishi KH. A constructivist connectionist model of
transitions on false-belief tasks. Cognition. 2013;126(3):441-58.

[27] Goodman ND, Baker CL, Bonawitz EB, Mansinghka VK, Gopnik A, Wellman
H, et al. Intuitive theories of mind: A rational approach to false belief. In: Pro-
ceedings of the twenty-eighth annual conference of the cognitive science society.
vol. 6. Cognitive Science Society Vancouver; 2006. .

[28] Wang L, Hemmer P, Leslie AM. A Bayesian framework for the development of
belief-desire reasoning: Estimating inhibitory power. Psychonomic Bulletin &
Review. 2019;26(1):205-21.

[29] Berke MD, Horschler DJ, Royka A, Santos LR, Jara-Ettinger J. What Pri-
mates Know About Other Minds and When They Use It: A Computa-
tional Approach to Comparative Theory of Mind. bioRxiv. 2025. Available
from: https://www.biorxiv.org/content/early/2025/09/10/
2023.08.02.551487.

[30] Lieder F, Griffiths TL. Resource-rational analysis: Understanding human cogni-
tion as the optimal use of limited computational resources. Behavioral and brain
sciences. 2020;43:el.

[31] Gershman SJ, Horvitz EJ, Tenenbaum JB. Computational rationality: A con-
verging paradigm for intelligence in brains, minds, and machines. Science.
2015;349(6245):273-8.

[32] Lewis RL, Howes A, Singh S. Computational rationality: Linking mechanism
and behavior through bounded utility maximization. Topics in cognitive science.
2014;6(2):279-311.

[33] Leslie AM. Pretense and representation: The origins of “theory of mind.”. Psy-
chological review. 1987;94(4):412.

[34] Sperber D. Metarepresentations: A multidisciplinary perspective. Oxford Uni-
versity Press; 2000.

Page 23


https://www.biorxiv.org/content/early/2025/09/10/2023.08.02.551487
https://www.biorxiv.org/content/early/2025/09/10/2023.08.02.551487

Factive mindreading

[35] Nagel J. Factive and nonfactive mental state attribution. Mind & Language.
2017;32(5):525-44.

[36] Phillips J, Norby A. Factive theory of mind. Mind & Language. 2021;36(1):3-26.
[37] Westra E, Nagel J. Mindreading in conversation. Cognition. 2021;210:104618.

[38] Royka A, Horschler DJ, Bargmann W, Santos LR. Exploring the evolutionary
roots of theory of mind: Primate errors on false belief tasks reveal representa-
tional limits. Cognition. 2026;270:106400.

[39] Dungan J, Saxe R. Matched false-belief performance during verbal and nonverbal
interference. Cognitive science. 2012;36(6):1148-56.

[40] Phillips J, Buckwalter W, Cushman F, Friedman O, Martin A, Turri J, et al.
Knowledge before belief. Behavioral and Brain Sciences. 2021;44:e140.

[41] Poppel J, Kopp S. Satisficing mentalizing: Bayesian models of theory
of mind reasoning in scenarios with different uncertainties. arXiv preprint
arXiv:190910419. 2019.

[42] Williamson T. Knowledge and its Limits. Oxford University Press; 2002.
[43] Gettier E. Is justified true belief knowledge? Analysis. 1963.

[44] Icard T. Bayes, bounds, and rational analysis. Philosophy of Science.
2018;85(1):79-101.

[45] Sims CR. Rate—distortion theory and human perception. Cognition.
2016;152:181-98.

[46] Wei XX, Stocker AA. A Bayesian observer model constrained by efficient coding
can explain ‘anti-Bayesian’ percepts. Nature neuroscience. 2015;18(10):1509-
17.

[47] Sims CR, Jacobs RA, Knill DC. An ideal observer analysis of visual working
memory. Psychological review. 2012;119(4):807.

[48] Gershman SJ. The rational analysis of memory. In: Oxford handbook of human
memory. Oxford University Press Oxford, UK; 2021. .

[49] Futrell R. Information-theoretic principles in incremental language production.
Proceedings of the National Academy of Sciences. 2023;120(39):e2220593120.

Page 24



Factive mindreading

[50] Zaslavsky N, Hu J, Levy RP. A rate-distortion view of human pragmatic reason-
ing. arXiv preprint arXiv:200506641. 2020.

[51] Taylor-Davies M, Lucas CG. Balancing utility and cognitive cost in social repre-
sentation. arXiv preprint arXiv:231004852. 2023.

[52] Taylor-Davies M, Quillien T. An information bottleneck view of social stereotype
use. In: Proceedings of the cognitive science society; 2025. .

[53] Sims CA. Implications of rational inattention. Journal of monetary Economics.
2003;50(3):665-90.

[54] Polania R, Woodford M, Ruff CC. Efficient coding of subjective value. Nature
neuroscience. 2019;22(1):134-42.

[55] Binz M, Schulz E. Modeling human exploration through resource-rational
reinforcement learning. Advances in neural information processing systems.
2022;35:31755-68.

[56] Lai L, Gershman SJ. Human decision making balances reward maximization and
policy compression. PLOS Computational Biology. 2024 04;20:1-32. Available
from: https://doi.org/10.1371/journal.pcbi.1012057.

[57] Ortega PA, Braun DA. Thermodynamics as a theory of decision-making with
information-processing costs. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences. 2013;469(2153):20120683. Avail-
able from: https://royalsocietypublishing.org/doi/abs/10.
1098/rspa.2012.0683.

[58] Arumugam D, Ho MK, Goodman ND, Van Roy B. Bayesian Reinforcement
Learning With Limited Cognitive Load. Open Mind. 2024 04;8:395-438. Avail-
able from: https://doi.org/10.1162/0opmi_a_00132.

[59] Cheyette SJ, Wu S, Piantadosi ST. Limited information-processing capacity in
vision explains number psychophysics. Psychological Review. 2024.

[60] Icard T, Goodman ND. A Resource-Rational Approach to the Causal Frame
Problem. In: Proceedings of the cognitive science society; 2015. .

[61] Kinney DB, Lombrozo T. Building Compressed Causal Models of the World.
Cognitive Psychology. 2023.

Page 25


https://doi.org/10.1371/journal.pcbi.1012057
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2012.0683
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2012.0683
https://doi.org/10.1162/opmi_a_00132

Factive mindreading

[62] Tishby N, Pereira FC, Bialek W. The information bottleneck method. arXiv
preprint physics/0004057. 1999.

[63] Berger T. Rate-distortion theory. Wiley Encyclopedia of Telecommunications.
2003.

[64] Blahut R. Computation of channel capacity and rate-distortion functions. IEEE
transactions on Information Theory. 1972;18(4):460-73.

[65] Arimoto S. An algorithm for computing the capacity of arbitrary discrete mem-
oryless channels. IEEE Transactions on Information Theory. 1972;18(1):14-20.

[66] Gondek D, Hofmann T. Conditional information bottleneck clustering. In: 3rd
ieee international conference on data mining, workshop on clustering large data
sets; 2003. p. 36-42.

[67] Zaslavsky N, Kemp C, Regier T, Tishby N. Efficient compression in color
naming and its evolution. Proceedings of the National Academy of Sciences.
2018;115(31):7937-42.

[68] Todd PM, Gigerenzer G. Ecological rationality: Intelligence in the world. OUP
USA; 2012.

[69] Simon HA. A behavioral model of rational choice. The quarterly journal of
economics. 1955:99-118.

[70] Pillow BH. Early understanding of perception as a source of knowledge. Journal
of experimental child psychology. 1989;47(1):116-29.

[71] Horschler DJ, Santos LR, MacLean EL. Do non-human primates really repre-
sent others’ ignorance? A test of the awareness relations hypothesis. Cognition.
2019;190:72-80.

[72] Krachun C, Carpenter M, Call J, Tomasello M. A competitive nonverbal false
belief task for children and apes. Developmental science. 2009;12(4):521-35.

[73] Luo Y, Johnson SC. Recognizing the role of perception in action at 6 months.
Developmental science. 2009;12(1):142-9.

[74] Hare B, Call J, Agnetta B, Tomasello M. Chimpanzees know what conspecifics
do and do not see. Animal Behaviour. 2000;59(4):771-85.

Page 26



Factive mindreading

[75] Townrow L, Krupenye C. Bonobos point more for ignorant than knowledgeable
social partners. Proceedings of the National Academy of Sciences. 2025;122(6).

[76] Friedman O, Petrashek AR. Children do not follow the rule “ignorance means
getting it wrong”. Journal of Experimental Child Psychology. 2009;102(1):114-
21.

[77] Chen Y, Su Y, Wang Y. Young children use the “ignorance= getting it wrong”
rule when predicting behavior. Cognitive Development. 2015;35:79-91.

[78] Fabricius WV, Boyer TW, Weimer AA, Carroll K. True or false: Do 5-year-olds
understand belief? Developmental Psychology. 2010;46(6):1402.

[79] Fabricius WV, Gonzales CR, Pesch A, Weimer AA, Pugliese J, Carroll K,
et al. Perceptual access reasoning (PAR) in developing a representational the-
ory of mind. Monographs of the Society for Research in Child Development.
2021;86(3):7-154.

[80] Oktay-Giir N, Rakoczy H. Children’s difficulty with true belief tasks: Compe-
tence deficit or performance problem? Cognition. 2017;166:28-41.

[81] Hare B, Call J, Tomasello M. Do chimpanzees know what conspecifics know?
Animal behaviour. 2001;61(1):139-51.

[82] Cantlon JF, Piantadosi ST. Uniquely human intelligence arose from expanded
information capacity. Nature Reviews Psychology. 2024;3(4):275-93.

[83] Roth G, Dicke U. Evolution of the brain and intelligence in primates. Progress
in brain research. 2012;195:413-30.

[84] Mayr E. Cause and effect in biology: kinds of causes, predictability, and teleol-
ogy are viewed by a practicing biologist. Science. 1961;134(3489):1501-6.

[85] Perner J, Leekam SR, Wimmer H. Three-year-olds’ difficulty with false belief:
The case for a conceptual deficit. British journal of developmental psychology.
1987;5(2):125-37.

[86] Buttelmann D, Buttelmann F, Carpenter M, Call J, Tomasello M. Great apes
distinguish true from false beliefs in an interactive helping task. PloS one.
2017;12(4):e0173793.

Page 27



Factive mindreading

[87] Butterfill SA, Apperly IA. How to construct a minimal theory of mind. Mind &
Language. 2013;28(5):606-37.

[88] Heyes C. Submentalizing: I am not really reading your mind. Perspectives on
Psychological Science. 2014;9(2):131-43.

[89] Burge T. Do infants and nonhuman animals attribute mental states? Psychologi-
cal Review. 2018;125(3):409.

[90] Horschler DJ, MacLean EL, Santos LR. Do non-human primates really represent
others’ beliefs? Trends in Cognitive Sciences. 2020;24(8):594-605.

[91] Lieder F, Griffiths TL. Strategy selection as rational metareasoning. Psychologi-
cal review. 2017;124(6):762.

[92] Keysar B, Lin S, Barr DJ. Limits on theory of mind use in adults. Cognition.
2003;89(1):25-41.

[93] Bricker AM. The neural and cognitive mechanisms of knowledge attribution: An
EEG study. Cognition. 2020;203:104412.

[94] Phillips J, Knobe J, Strickland B, Armary P, Cushman F. Evidence for evaluations
of knowledge prior to belief. In: Proceedings of the cognitive science society;
2018. .

[95] Gonzalez B, Armary P, Dungan J, Strickland B, Knobe J, Cushman F, et al.
Knowledge without belief. 2025.  Available from: https://osf.io/
preprints/psyarxiv/ht65f_v2.

[96] Manea V, Kampis D, Grosse Wiesmann C, Revencu B, Southgate V. An initial
but receding altercentric bias in preverbal infants’ memory. Proceedings of the
Royal Society B. 2023;290(2000):20230738.

[97] Blokpoel M, Kwisthout J, van der Weide TP, Wareham T, van Rooij I. A
computational-level explanation of the speed of goal inference. Journal of Math-
ematical Psychology. 2013;57(3-4):117-33.

[98] Chandra K, Chen T, Li TM, Ragan-Kelley J, Tenenbaum J. Inferring the future
by imagining the past. Advances in Neural Information Processing Systems.
2023;36:21196-216.

Page 28


https://osf.io/preprints/psyarxiv/ht65f_v2
https://osf.io/preprints/psyarxiv/ht65f_v2

Factive mindreading

[99] Zhi-Xuan T, Kang G, Mansinghka V, Tenenbaum JB. Infinite Ends from Fi-
nite Samples: Open-Ended Goal Inference as Top-Down Bayesian Filtering of

Bottom-Up Proposals. Proceedings of the Annual Meeting of the Cognitive Sci-
ence Society. 2024 Jul;46(46).

[100] Ho MK, Saxe R, Cushman F. Planning with theory of mind. Trends in Cognitive
Sciences. 2022;26(11):959-71.

[101] Sell A, Sznycer D, Al-Shawaf L, Lim J, Krauss A, Feldman A, et al. The grammar
of anger: Mapping the computational architecture of a recalibrational emotion.
Cognition. 2017;168:110-28.

Page 29



	Introduction
	Modeling framework
	Task
	Actor's task.
	Observer's task.


	Results
	Experiments
	Predicting behavior
	High-resource observers flexibly switch between knowledge and belief representation.
	Learning about the world
	Control simulations

	Discussion
	The logic of factive mindreading
	Competence and performance
	Hybrid strategies for mindreading
	Limitations and directions for future research


