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A B S T R A C T

Cognitive scientists have documented the existence of “essentialist” intuitions in humans: from a very early age,
we assume that things have deep unobserved properties that make them what they are. I provide a sketch of an
adaptationist explanation of psychological essentialism, arguing that these intuitions are the unsurprising output
of adaptations for inductive inference. Variations on this insight have previously been used mostly as after-the-
fact speculations, yet theories of adaptive function should ideally have a primary role in informing psychological
research. Here I propose that viewing essentialist intuitions through an adaptationist lens has implications for
some widespread assumptions about the phenomenon. Notably, researchers' focus on “higher-level” processes
like categorization has led them to assume that essentialism is restricted to a few cognitive processes, but the
ubiquity of inductive inference problems in cognition suggests otherwise. Additionally, because essentialist
intuitions are the output of mechanisms solving related but distinct inference problems, it is unlikely that a single
mechanistic theory can account for them all.

Cosmides and Tooby (1994) have argued that progress in cognitive
science has been limited by a failure to think in rigorous adaptationist
and computational terms. This is because “intuition systematically
blinds us to the full universe of problems our minds spontaneously
solve, restricting our attention instead to a minute class of un-
representative ‘high-level’ problems” (p.41). Here I propose that re-
search on “psychological essentialism”1 provides a good case study of
this problem.

Starting in the late 1980's, cognitive scientists have documented an
impressive array of ‘essentialist’ intuitions that humans have from a
very early age (Gelman, 2003). Essentialism is a constellation of phe-
nomena, but its main components can be roughly summarized as the
following. (1) Human concepts are not simple lists of features but in-
volve the representation of yet-to-be-discovered entities: people know
that something can look like gold but be something else, because their
concept of gold is not a simple list of perceptual features (like being
yellow and shiny): instead they think that whether something counts as
gold can also be determined by some (possibly yet undiscovered) non-
obvious properties. (2) Causal relationships play an important role in
the way concepts are structured: people assume that some features of an
entity are causally related to each other, and this causal information

plays a crucial role in people's categorization decisions, in that causally
deep features are more important. For instance, people may assume that
something in the atomic structure of gold causes gold to be yellow and
shiny, and that having this particular atomic structure is more im-
portant to what it means to be gold than being yellow and shiny. (3)
People have strong domain-specific assumptions about categories. For
instance, they understand that the “insides” of an animal are important
in determining the properties of this animal (Gelman & Wellman, 1991;
Keil, 1989); by contrast they do not rely on this principle when rea-
soning about artifacts.

The research program on psychological essentialism is mostly con-
cerned with “high-level” cognitive processes such as categorization. It
has also mostly raised questions of adaptive function as an afterthought,
if at all. For instance, the most authoritative book on essentialism
(Gelman, 2003), asks “why do we essentialize?” only in the very last
chapter, in a section dedicated to speculations.

Yet without a theory of adaptive function to guide one's investiga-
tion, discovering the cognitive mechanisms that underlie a set of phe-
nomena is like looking for a needle in a haystack (Cosmides & Tooby,
1994). One may get a rough idea of where to start looking by consulting
one's common-sense intuitions about the mind, but those are a poor
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guide to the actual structure of cognition, notably because most of the
computations our brain performs are outside of conscious awareness.
Instead, investigation of a cognitive system ideally starts by specifying
the information-processing problem this system is designed to solve.
Then, one proceeds to find a good solution to this problem (a compu-
tational theory, Marr, 1982). The structure of the cognitive system one
studies is likely to implement an approximation to such a solution.

Marr uses the example of a cash register to illustrate the concept of a
computational theory. To understand how a cash register works, one
has to understand the problem it is designed to solve. The machine has
to compute the total price a customer must pay for the contents of his
basket. A number of requirements follow from this problem: if I buy
nothing, it should cost me nothing; if I buy nothing and then something,
it should cost me as much as if I had bought just the something; the
order in which the goods are presented to the cashier should not affect
the total I have to pay; etc. The complete list of requirement turns out to
be equivalent to the definition of the arithmetic operation of addition:
therefore, we can summarize the design requirements of a cash register
by saying that it has to be able to perform additions.

The computational theory of an information-processing problem is
agnostic about the way the computation is performed. It specifies that
the cash register has to perform addition, not whether it should encode
the numbers in base 2 or base 10. This latter kind of question belongs to
what Marr calls the algorithmic level of analysis. This level describes the
format in which the relevant information is represented, and the al-
gorithms that operate over these representations. Importantly, for a
given computational theory, there is an infinity of possible algorithms
that can perform the specified computations: for instance, the same
addition can be performed using binary, decimal, hexadecimal num-
bers, etc.

Research on essentialism has almost exclusively focused on the al-
gorithmic level of analysis: researchers have sought to explain their
data using theories of the structure of people's representations and the
algorithms that operate over these representations. The most popular
such theory, Psychological Essentialism Theory (PET), claims that
people represent categories as having an essence, a feature whose
possession is necessary and sufficient for being the thing in question
(Gelman, 2003; Medin & Ortony, 1989). This focus on the algorithmic
level makes PET a proximal explanation.

By contrast, here I want to explore ultimate explanations to essen-
tialism. I provide a sketch of an adaptationist framework within which
to understand the empirical findings on essentialism, mostly at the
computational level of analysis. I show that, to a large extent, this
framework validates the main conclusions of the research program: for
instance, on an evolutionary basis we strongly expect essentialism to be
a universal, reliably-developing phenomenon (Gelman, 2003) as op-
posed to a cultural construction (Fodor, 1998). On the other hand, I
propose that the neglect of the computational level of analysis has
forced researchers to ground their work on unreliable folk-psycholo-
gical concepts and intuitions. Because most research on essentialism is
restricted to relatively “high-level” processes, it is commonly assumed
that essentialism is a superficial add-on to an otherwise non-essentialist
cognition (for instance, Fodor (1998), views essentialism as a cultural
innovation; Gelman (2003) doubts that it occurs in non-human ani-
mals). Also, current work tends to assume that the various components
of essentialist intuitions can be explained by some underlying common
structure or cognitive bias (Cimpian & Salomon, 2014; Gelman, 2013;
Newman & Knobe, 2018) – for instance, that the same general re-
presentational structure explains both why people think of things as
having undiscovered features and why they spontaneously intuit that
animals inherit some properties from their parents (Ahn et al., 2001). I
will argue that, from a computational point of view, these assumptions
are not necessarily warranted.

I first identify a class of information-processing problems that con-
stitute adaptive challenges for which essentialism may be relevant
(Section 1). In later sections I describe some design requirements for

cognitive systems that would have to solve these information-proces-
sing problems. These systems have to be non-descriptivist (Section 2),
be able to represent causal relations (Section 3) and to use domain-
specific knowledge (Section 4). I show that essentialist intuitions that
have been documented in humans follow directly from these design
requirements.

In this light, I then propose that it is not necessary to posit the ex-
istence of a single representational structure to explain essentialist in-
tuitions (Section 6), and that theories that posit such a single structure
are implausible (Section 7).

1. Identifying a class of information-processing problems

Essentialist intuitions are intuitions about category membership.
There is a general consensus that the main function of categorization is
to promote inductive inferences (Anderson, 1991; Barrett, 2001;
Gelman & Coley, 1991). Therefore, it is very likely that essentialism is
adaptive because it helps people make better inductive inferences
(Barrett, 2001; Gelman, 2003; Gelman & Coley, 1991). The idea is that,
because the world does have a complex causal structure, cognitive
mechanisms that assume such a complex structure when constructing
and using categories have an epistemic edge over those that do not. In
the next paragraphs, I elaborate on this idea by proposing that the set of
information-processing problems for which essentialist cognition is
adaptive is larger than typically recognized.

Cognitive scientists say that a category like “birds” has a “rich in-
ductive potential” to mean that because birds have a lot of features in
common with each other, something that one learns about a particular
bird can easily be generalized to most other birds. Categories like
“birds”, “gold”, or “trees” that have a very rich inductive potential are
typically called “natural kinds” to highlight the fact that they are not
arbitrary groupings. Researchers have proposed that essentialism is
useful because it enables category-based inference, most notably for
natural kinds (Barrett, 2001; Gelman, 2003; Gelman & Coley, 1991).
However, terms like “natural kinds” and “categories” are not very well
defined from a computational point of view. For instance, if natural
kinds are those kinds that have a rich inductive potential, then there is
no clear delimitation between what counts as a natural kind and what
does not: instead there is a continuum between kinds that are very
natural and kinds that are very unnatural, with “tigers” and “white
things” at each extreme, and kinds such as “chair” somewhere in the
middle (Markman, 1989; Millikan, 1998). “Category” is also a proble-
matic concept, because intuitively the term refers to a set of several
items (like “birds”, or “US presidents”), rather than one single in-
dividual (like “this bird” or “John Kennedy”). But even a single in-
dividual can have a rich inductive potential: because people do not
change a lot over time, something one learns about a person can be
predictive in future encounters with that person. Essentialist intuitions
can apply to individual concepts, as when people think that the original
Mona Lisa is more valuable than a perfectly identical copy (Gelman,
2013). Therefore, it is convenient to have a term that refers to anything
that has some inductive potential, whether a category or an individual.

To this end, Millikan (1998) introduces the concept of substance. A
substance is simply an entity “about which it is possible to learn from
one encounter something about what to expect on other encounters”
(p.57). For instance, the kind “birds” is a substance because what one
learns about a particular bird might be generalized to other birds. The
individual “Jack” is also a substance because what we learn on one
encounter with Jack is predictive in future encounters with the person.
The use of extra jargon in science is usually bad, but adopting the
concept of substance is justified here, because the ontology that is
provided by common sense is somewhat unhelpful.2 Although kinds

2 The use of a strange term like “substance” instead of more familiar terms
like “category” is not meant to imply that the world is somehow fundamentally
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and individuals are different in a lot of ways, having a term encom-
passing both highlights the fact that their representations perform a
very similar computational function. When I enter a room and see
someone standing there, if I recognize this person as none other than
my friend Jack, I am able to make a lot of new inferences about the-
person-in-the-room (if I know that Jack is shy, I can predict the beha-
vior of the-person-in-the-room). Similarly, if I see an animal on a tree
branch, if I recognize this animal as a bird, I can make a lot of new
inferences about the-animal-on-the-branch (I can predict that it can
fly). In both cases we use the representation of a substance for in-
ferential purposes.

The world contains many substances, which by their very nature can
be exploited for information-gathering purposes by organisms
(Millikan, 1998). One fundamental adaptive problem for any organism
is to construct and maintain good representations of fitness-relevant
substances, and use these representations to generate inferences. This is
an extremely general problem. Organisms have to make inferences from
sparse data all the time, and those are notoriously difficult (Chomsky,
1959; Markman, 1989; Tooby & Cosmides, 1992). They require some
background knowledge that can be provided by a representation of the
relevant substances. While our common-sense ontology makes ap-
pealing the notion that there is such a discrete thing as a problem of
category-based inference, or of natural-kind-based inference, from a
computational point of view, any substance that has some inductive
power presents information-gathering opportunities, and exploiting
these opportunities is an adaptive problem. While Gelman (2013,
p.460) recognizes that “all higher thought entails going beyond the
information given”, inferences from sparse data are equally character-
istic of “lower” mental processes like vision (Helmholtz, 1925; Knill &
Richards, 1996; Marr, 1982). Focusing on “higher” problems un-
necessarily restricts one's attention to an unrepresentative subset of the
inference problems our minds routinely have to solve.

There is a wide variety of design requirements for a cognitive
system that has to perform substance-based inference. In the next sec-
tions I lay out some of these design requirements, and show that they
can explain essentialist intuitions in humans.

2. Non-descriptivism

One possible design for substance representation systems is for the
representation to just be a list of the features that the substance has.
Traditionally this idea has been associated with theories of concepts
such as classical and prototype theories (see Smith & Medin, 1981, for
review). The idea is that people's mind contains a list of features that
birds do and do not have, and in order to decide whether an X is a bird,
they just check the features of that X against the list. If there is a suf-
ficient match between the features of X and the list of bird-typical
features, then X is recognized as a bird. The list of features, together
with a procedure that specifies what constitutes a match to that list, is
all there is to the representation of “birds”. This procedure can be very
sophisticated (e.g., it can be probabilistic); nonetheless, the list of fea-
tures and the associated identification procedure are all there is to the
representation.

The doctrine that representations are just lists of features is known
as descriptivism (see Recanati, 2012). From a computational point of
view, one does not expect evolved organisms to have descriptivist re-
presentations, because these have several weaknesses.

First, constructing the correct representation of a substance is an
inference problem. People do not have innate knowledge about birds;

they must learn that “birds” are a meaningful category, and learn how
to best identify birds, on the basis of limited data. Especially at the early
stages of this inference process, the tentative list of features that they
have collected is very unlikely to be the correct one. A child might have
an early representation of birds that includes bats and pterodactyls but
excludes ostriches, and then gradually improve this representation over
time, by learning more about the features that birds do and do not
possess (e.g. learning that all birds have feathers). Because inferring the
right representation of “birds” is an empirical problem, there is no a
priori way for an organism to know when its current list of features is
perfectly accurate.

A related problem is the fact that substances can change over time.
That Jack is wearing a blue t-shirt today does not mean that he will
wear one tomorrow. Our representation of Jack should include the
information that Jack is wearing a blue T-shirt, but the slot in our re-
presentation that says “blue T-shirt” should be allowed to be over-
written, because people can change clothes while retaining their other
characteristics. More strikingly, the Ship of Theseus has its pieces
continuously replaced: one can imagine that a version of the Ship ten
years from today would have no single feature in common with the one
we see now, but assuming that the changes are gradual enough, the
Ship is a valid substance, because most of what one knows about today's
version of the Ship can be generalized to tomorrow's version. In our
representation of the Ship, no feature should be immune from re-
placement.

Therefore, well-designed cognitive programs for representing sub-
stances are expected to include procedures for modifying the list of
substance-typical features, in order to make it more accurate, or keep it
synchronized with the actual state of the world. The system should also
have an estimate of how well the substance is currently represented,
such that it knows how to weigh new information about it (e.g., a bo-
tanist should be more reluctant to change his representation of what a
tree is than a child should be, because he knows that he already has a
relatively good grasp on the matter). Descriptivist representations, as
defined above, contain no information about the uncertainty that the
system has about the representation's accuracy, and do not allow for the
representation to be improved over time, or for parts of the re-
presentation to be overwritten to keep track of a changing world, be-
cause they do not have a procedure for modifying the list of features
(indeed, modifying the list of features would amount to creating a new
concept entirely). Therefore they are not a plausible design for cogni-
tive systems of actual organisms (see also Millikan, 1998).

A major impetus for the claim that humans are naïve essentialists is
the fact that we have non-descriptivist representations. In particular,
research has shown that representations are not simple lists of per-
ceptual features, even in children. Gelman and Markman (1986, 1987)
showed that preschoolers are able to generalize non-obvious properties
across category members on the basis of category labels, and that these
labels override perceptual similarity. For instance, 4-year-olds were
shown a dolphin, a shark, and a tropical fish, and told that a shark and a
tropical fish are both fishes. When told that the shark stays underwater
to breathe, children preferentially extended this property to the tropical
fish rather than the dolphin, despite the fact that the dolphin was more
similar in appearance (see also Gelman & Coley, 1990; Welder &
Graham, 2001). Gelman and Wellman (1991) find that preschoolers
consider non-visible properties (“insides”) of some objects to be more
important to category membership than their visible “outsides” in de-
termining category membership. Non-descriptivism also characterizes
children intuitions about stability over transformation: 7-year-olds
consider that a raccoon made to look like a skunk is still a raccoon (Keil,
1989; see Rips, 1989 for similar results in adults). Finally, spatio-tem-
poral continuity, more than physical features, plays a major role in
people's intuitions about persistent identity over time (Gelman, 2013;
Hall, 1998). These empirical findings are unsurprising, given the re-
cognition that descriptivism does not meet the design requirements of
cognitive systems for substance-based inference.

(footnote continued)
different than what people think, or that the familiar terms do not describe real
and important things. Describing the world in terms of substances is merely
more helpful in the context of this paper, because of its emphasis on the
computational level of analysis.
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3. Causal inference

Some substances get their rich inductive potential from the fact that
all their features have a common cause: most of the properties of gold
can be explained by its chemical structure (having atomic number 79).
More generally, the features of a substance are very often linked by
causal relationships: birds can fly because they have wings, and have
wings because their DNA codes for the development of wings.
Representing the correlation between these features is adaptive, but
representing them as being the symptom of causal relationships is even
better. Suppose a person's representation of “birds” includes the in-
formation that there is a correlation between having wings and being
able to fly (such that birds with no wings generally cannot fly, and vice-
versa). The observed correlation can be explained by several competing
causal models: having wings might cause the ability to fly, the ability to
fly might cause the possession of wings, or a third variable might cause
both. Although equally consistent with the observed correlation, each
of these models also makes different predictions. On the “flying causes
wings” causal model, cutting a birds' wings should not deprive it of the
ability to fly, but it should do so on the “wings cause flying” model.
Therefore, getting the right causal model is important, and we would
like our cognitive systems for substance-based inference to be able to
adequately extract and use causal information.

Causal relations in the world are not transparently visible, and so
organisms must solve a ‘causal inverse problem’ (Gopnik et al., 2004).
They have to infer causal facts from limited data – in the same spirit
that the visual system must solve a ‘spatial inverse’ problem of inferring
the 3-D structure of the world from the information reaching the 2-D
surface of the retina. They can solve the causal inverse problem by
performing direct interventions on their environment, and by in-
tegrating observational data about correlations with prior assumptions
about the way the world works (e.g., causes usually precede effects,
diseases cause symptoms rather than vice-versa, etc.). By doing so, they
can construct causal maps of the world, internal representations of the
causal relationships between variables from which predictions can be
made (Gopnik et al., 2004).

Research in artificial intelligence provides computational theories of
the problems involved in the acquisition and use of causal knowledge,
thanks to formalisms such as Bayesian causal networks (Pearl, 2000;
Glymour, 2001; Griffiths & Tenenbaum, 2005). Briefly, a Bayesian
causal network is a formal model of the causal relations between
variables, which uses probability theory and basic principles about
causality to make appropriate inferences. For instance, a causal net-
work can be used to represent the fact that either rain or a water
sprinkler can make the pavement wet; and upon learning that the pa-
vement is wet and that the water sprinkler is off, the network can infer
that it has been raining (Pearl, 2000).

Human cognition turns out to be accurately described by these
computational models – for instance, children seem to extract causal
information in a way that is consistent with the prescriptions of
Bayesian theories of causal learning (Gopnik et al., 2004; Schulz, 2012).
Computational theories of causal cognition also shed light on results in
the essentialist literature that involve the representation of the causal
structure of categories. Medin and Ortony (1989) have argued that one
important component of essentialist thinking is the fact that people
think of categories as having a “core” - a small set of features which are
crucial for category membership, and tend to have causal power in
producing the other features of category members. Ahn, Kim, Lassaline,
and Dennis (2000) have shown that people think that the deeper a
feature lies in a causal chain, the more central it is to category mem-
bership. Given causal information in the form of a chain such as Bird
DNA→Wings→ Flight, they think that having bird DNA is more cen-
tral to what it means to be a bird than having wings, which is itself
more central than being able to fly. This effect of causal depth on fea-
ture centrality has been shown formally to be a requirement of com-
putational theories of causal representation, given certain minimal

assumptions (Rehder, 2007), thus providing an ultimate explanation for
the phenomenon.

Computational theories of causal inference also bring an additional
piece of explanation to empirical results such as the finding by Keil
(1989), that children are not fooled by surface transformations, and
judge that a raccoon dressed up as a skunk is still a raccoon. We saw in
the previous section that an organism should not rely exclusively on
surface features when determining substance membership. But why is
the child not compelled by the change in surface features to infer that
the other, non-visible features of the animal were also changed? The
answer is simple if we assume that the child maintains an internal map
of the causal relationships between category features. Because the child
is aware that the cause of the changes in the surface features of the
animal is exogenous – they are the responsibility of the experimenter –
the new surface features do not prompt the child to draw new in-
ferences about the causally deep properties of the animal. As we just
saw, the latter are central to substance membership, and therefore the
child has no reason to re-categorize the animal.

4. Domain-specific knowledge

Inductive inference is a difficult problem because it requires in-
ductive constraints, which help an organism select the best one among
the infinity of possible inferences that it could draw from a given set of
data. Some of these constraints are very general: for instance, good
inference should be consistent with the laws of probability; also, as
argued above, inductive inference systems should not in general be
descriptivist. However, inference also relies on relevant background
knowledge, which will vary from one domain to the next. Therefore, on
functional grounds one does not expect inductive inference to be gov-
erned exclusively by a rigid single set of principles; inference systems
should exhibit some degree of specialization to their domains (Boyer &
Barrett, 2015).

To give an example, birds are animals, and therefore specialized
knowledge about animals is helpful in order to solve the difficult pro-
blem of inferring the correct representation of “birds” from sparse data.
An organism correctly guessing that birds are animals can construct a
representation of birds that inherits all the general properties of ani-
mals: animals have to breathe, eat, reproduce, can move, etc., and by
extension birds do as well. Knowledge about animals also contains
abstract information about the way an animal species is structured, like
the fact that species membership can be inherited genealogically, so
that the offspring of a bird will necessarily also be a bird. It also con-
tains information about the features that can be validly generalized
from a single substance members to all other members. For instance,
the fact that an ostrich lays eggs can be generalized to all birds, but its
size cannot.

Note that arguing that domain-specificity is essential to successful
inference is not the same as arguing that domain-specific knowledge is
genetically encoded. Some researchers have argued that domain-spe-
cific knowledge could in principle be learned, thanks to sophisticated
statistical learning algorithms that construct hierarchical models of the
world, where knowledge about one level (e.g. knowledge about birds;
knowledge about animals) constrains and guides learning at the other
levels. These algorithms are theoretically capable of acquiring even
very abstract principles (see Kemp & Tenenbaum, 2008; Tenenbaum,
Griffiths, & Niyogi, 2007; Tenenbaum, Kemp, Griffiths, & Goodman,
2011). Research in this tradition is nonetheless committed to the idea
that domain-specific knowledge is essential for successful inference
(Tenenbaum et al., 2011). Therefore, however much of mental content
is actually genetically encoded, one expects the mind, on functional
grounds, to eventually develop specialized inference systems.

It is indeed the case that people's intuitions about entities in a do-
main are guided by very rich background knowledge about that domain
(what cognitive scientists call intuitive theories). Most of the evidence
for this claim has come from studies of people's intuitions about the
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biological domain. Humans seem to possess universal, early-developing
intuitions about the biological world (Atran, 1998; Inagaki & Hatano,
2006), and they use these intuitions to guide the inferences they make
about living things.

Many essentialist intuitions involve such domain-specific knowl-
edge about the biological world. For instance, preschoolers grant more
importance to biological heredity than environmental factors when
predicting the features of biological entities. Gelman and Wellman
(1991) showed that 4-year-olds consider that an apple seed put in a
flower pot will grow into an apple tree, and a baby rabbit raised by
monkeys will grow up to prefer carrots to bananas. Hirschfeld (1995)
similarly found that preschoolers predict the skin color of an adopted
child to match that of its biological rather than its adoptive parents.
Children are also sensitive to the privileged role of internal features in
guiding inductive generalization about animals (Gelman & Wellman,
1991), even in infancy (Newman, Herrmann, Wynn, & Keil, 2008;
Setoh, Wu, Baillargeon, & Gelman, 2013).

Assuming the existence of this abstract domain-specific knowledge
completes the explanation of Keil's (1989) transformation experiments.
How do children know that raccoons get most of their inductive po-
tential from internal, as opposed to superficial, features? It is hazardous
for them to make the blanket assumption that every substance gets its
inductive potential from non-visible features, because there are sub-
stances for which this is false: there is nothing hidden within a bird-
feeder that is responsible for all the artifact's properties. Rather, they
rely on abstract knowledge they have about living things – knowledge
that might be innate, or learnt over the years thanks to powerful me-
chanisms for hierarchical probabilistic inference. This body of biolo-
gical knowledge contains the abstract principle that animals get most of
their inductive potential from internal features, and the child's judg-
ments are guided by this principle.

Keil's data suggest that domain-specific principles are indeed ap-
plied where they are relevant. When reasoning about artifacts, children
do not use principles that apply to the biological world. Children were
willing to accept that external transformation could change the cate-
gory membership of an artifact, such that a coffeepot made to look like
a birdfeeder is now a birdfeeder; this result contrasts with their intui-
tions about animals. Note that this finding does not imply that people
are not essentialist about artifacts; they merely use different criteria,
like creator's intent (Bloom, 1996) to infer substance membership in
that domain (when an artifact is transformed by accident, people ty-
pically do not re-categorize it).

As Strevens (2001) argued, postulating a domain-general essenti-
alist bias is an incomplete explanation for most essentialist intuitions –
the latter often cannot be made sense of without understanding the
nature of the domain-specific knowledge people use to guide their in-
ferences (see also Barrett, 2001; Boyer, 1998, 2000).

5. Interim summary

Just as listing the design requirements for a cash register yields the
definition of the arithmetic operation of addition, listing some of the
common design requirements for systems of substance-based inference
yields the main characteristics of essentialist intuitions that have been
documented in humans. Assuming that natural selection creates or-
ganisms with well-designed cognitive adaptations for substance-based
inference, it is not surprising that humans have universal, reliably-de-
veloping essentialist intuitions. An organism unable to dynamically
update the content of his substance representations, unable to represent
the causal relationships between substance features, and unable to draw
on abstract domain-specific principles to guide his inferences would be
doomed to reproductive oblivion. From this adaptationist point of view,
it is very unlikely that essentialism is only a recent cultural construction
(Fodor, 1998) or a consequence of language (Carey, 1996).

The view that essentialism is the symptom of a suite of cognitive
adaptations for problems of substance-based inference has broader

implications. If essentialist intuitions can be explained at the compu-
tational level of analysis, a single unifying algorithmic-level account of
these intuitions may be unnecessary. Such a unifying theory might even
be impossible, because one expects inference systems to be specialized.

By contrast, essentialist intuitions are often explained by
Psychological Essentialism Theory (PET), a unifying algorithmic-level
theory that aims at explaining all essentialist intuitions as falling out of
the same representational structure. In the next sections, I therefore
suggest that the adaptationist account warrants some skepticism about
the explanatory scope of PET.

6. A unifying algorithmic theory of essentialist intuitions may be
unnecessary

Above I have given a sketch of an explanation of essentialist intui-
tions at the computational level of analysis. This raises the following
question: to what extent can one explain essentialism at the algorithmic
level? Recall that in Marr's scheme (Marr, 1982) the algorithmic level
specifies the kinds of algorithms that perform the computations, as well
as the representational format these algorithms use.

Essentialist intuitions are often explained at the algorithmic level by
PET, a theory about the structure of some mental representations.
Before describing PET in more detail, it is worth asking whether the
current computational account can, even in principle, have implications
for the theory. Computational and algorithmic theories belong to dif-
ferent levels of explanations, and therefore they are not directly com-
peting with each other. For instance, many different algorithmic the-
ories of a cognitive system can be consistent with a given computational
theory. If one could not open the insides of a cash register, one could
still derive a theory of what the cash register does by observing its
behavior, but one could not say on this basis whether its circuits are
representing numbers in base 2 or base 10, or whether it uses serial or
parallel computing.

Although theories at different levels of explanation do no directly
compete with each other, they can still have implications for one an-
other. Consider the following example, which uses Tinbergen's (1963)
typology of explanations in biology. One can explain why bats have
wings by pointing to some embryological process (say, embryological
process X) that reliably results in the development of wings in bats: this
is an ontogenetic explanation. One can also show that wings enable bats
to fly, which has adaptive advantages: this is a functional explanation.
Although the two explanations do not directly compete with each other,
the functional explanation has implications for the scope of the onto-
genetic explanation. If one finds that wings have an adaptive function
in all taxa in which they exist, then they may have evolved via con-
vergent evolution; if so, the only explanation of wings that is general
enough to apply to all taxa may be the functional explanation. That is,
maybe no unique embryological process can account for the existence
of wings in all these taxa. Embryological process X may still be a valid
ontogenetic explanation of bat wings, but we would now be cautious
about extending this explanation to butterflies. By contrast, if it appears
that wings have no adaptive function, then the existence of a single,
conserved embryological process is a more likely explanation to the
existence of wings across these taxa.3

Similarly, one can argue that, given the proposal that essentialist
intuitions follow from basic design requirements of mechanisms for
substance-based inference, one might not need to assume that all es-
sentialist intuitions are explained by the same algorithmic theory. That

3 Note that I am using this analogy to make a general point about how, in
science, explanations at different levels can have implications for one another. I
am not making a point about convergent evolution in particular. Notably, when
I argue below that the computational account has implications for the scope of
an algorithmic account of essentialism, this argument does not strongly depend
on whether different cognitive systems evolved via convergent evolution or not.
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is, the computational account has implications for the potential ex-
planatory scope of an algorithmic account.

PET is the theory that people's representations of certain substances
are structured around the representation of an essence (Gelman, 2003;
Medin & Ortony, 1989). According to the theory, people (implicitly)
represent a feature of the substance, the essence, as being causally re-
sponsible for other substance-typical properties, and think that sub-
stance membership is mostly determined by possession of the essence.
For instance, people think that there is some non-obvious property (the
essence of gold) that causes gold to have the other properties that it has
(such as being yellow and shiny), and that for something to qualify as
gold, it must have that property. People think there is such an essence
of gold even when they cannot specify what it is: their representation of
“gold” contains an “essence placeholder” (Medin & Ortony, 1989) that
exists even before they learn that the essence of gold is atomic number
79.

Note that researchers writing about essentialism are not usually
explicit about which level of analysis they are interested in.
Nonetheless, within Marr's framework, PET may be most appropriately
described as being concerned with the algorithmic level. It is a theory
about the structure of the representations over which algorithms for
categorization operate; it does not aim at describing this structure in
detail, but it does make statements about it. For instance, the theory
claims that substance representations are structured around an essence
placeholder: this is not a statement about how the mind ought to be
(many cognitive scientists actually argue that many substances do not
have true essences (Gelman, 2003), which makes it sub-optimal to re-
present them as such), but a statement about how the mind is struc-
tured. Contrary to a computational theory, PET is not concerned with
an analysis of the information-processing problems that categorization
solves, or with the identification of optimal solutions to these problems.
It is not an implementation-level theory either; it does not make
statements about, for instance, where essentialism is localized in the
brain, or the kind of neural firing patterns that could underlie the
phenomenon.4

Psychologists have argued that essentialism can explain a wide
variety of phenomena, such as: why people attribute more aesthetic
value to an original painting than a physically identical copy (Bloom,
2010; Gelman, 2013), why natural selection is counter-intuitive
(Shtulman & Schulz, 2008), why people are opposed to GMOs (Blancke,
Van Breusegem, De Jaeger, Braeckman, & Van Montagu, 2015), why
they believe that every person has a hidden True Self that is morally
good (De Freitas, Cikara, Grossmann, & Schlegel, 2017), or why they
think that an organ transplant might change someone's personality
(Meyer, Gelman, Roberts, & Leslie, 2017). If a single theory about the
format of mental representations could explain all essentialist intui-
tions, then this theory would seem to have a very impressive ex-
planatory scope.

Yet in light of the computational account sketched here, one does
not strongly expect that the same kind of representational structure
underlies all essentialist intuitions. If essentialist intuitions follow from
design requirements of inductive inference systems, then it might be
that some of these intuitions are widespread simply because they fall
out of widespread functional requirements. Although one might say
that people have essentialist intuitions about the Mona Lisa and about
tigers, it is still possible that the mental representation of the Mona Lisa
and the mental representation of “tigers” have a very different struc-
ture. The assumption that one needs a single algorithmic theory to
explain essentialism about the Mona Lisa and essentialism about tigers
may simply be the result of a neglect of the computational level of
explanation.

Making this assumption may be the same kind of mistake as that
made by a biologist who would assume that the ontogenetic explana-
tion for the existence of bat wings will also apply to butterflies and
pterodactyls, because he cannot see the - more general - functional
explanation for the existence of wings in these various species. In the
absence of a convincing computational account of essentialist intui-
tions, it may seem that the only explanation for their prevalence is the
hypothesis that the cognitive systems underlying these intuitions share
some deep structural similarities. By contrast, the proposal that these
intuitions follow from basic design requirements of these systems raises
the possibility that the systems actually have very different structures.
For instance, different cognitive mechanisms may be non-descriptivist
despite using very different algorithms: the fact that these systems are all
non-descriptivist can be explained by the fact that these systems share
non-descriptivism as a basic design requirement. The same design re-
quirement can have a variety of alternative solutions at the algorithmic
level – therefore it is possible that the same design requirement will be
met using different algorithms or different representational formats in
different cognitive systems (Marr, 1982).

Note that the computational account does not eliminate the need for
algorithmic theories: even if one has a computational account of the
problem being solved by a given cognitive system, in order to fully
understand this system, one also needs to give an algorithmic ex-
planation for how this system produces essentialist intuitions. The
present argument is that one may not need to account for all essentialist
intuitions with the same algorithmic-level theory. Furthermore, the
only explanation that is general enough to account for all instances of a
class of essentialist intuitions may turn out to be a computational-level
explanation.

7. A unifying algorithmic theory of essentialist intuitions may be
impossible

On functional grounds one expects that different inference systems
will in fact have different structures, because specialization is crucial to
successful inference (see Section 5 above). In general, different in-
ference systems will have slightly different functional requirements. For
instance, a system for the representation of artifact kinds and a system
for the representation of biological kinds are expected to make use of
different bodies of background knowledge relevant to their respective
domains. And indeed the data suggests that they do, since the same task
(e.g. the transformation task in Keil, 1989) can elicit different sorts of
intuitions in people reasoning about animals vs artifacts.

Therefore, instead of being the symptom of a common representa-
tional structure, one expects “essentialism” to be a loose constellation of
intuitions. These intuitions arise as the output of systems that solve
related, but ultimately distinct, information-processing problems. Given
that systems with different design requirements are expected to have
different representational structures, one does not really expect these
intuitions to be explained by a single algorithmic theory. Some essen-
tialist intuitions may be impossible to explain without appealing to
domain-specific knowledge: for instance it is plausible that people's
sensitivity to genealogical relationships when reasoning about animals
does not just fall out of a general representational structure, but is ra-
ther part of a specialized package of knowledge about the biological
world. Thus, some essentialist intuitions may require more than PET to
be fully explained.

Conversely, some essentialist intuitions may be explained as falling
out of simpler representational formats. Consider, for example, how the
mind represents individual objects and tracks them across time and
space. There exists a large literature on the cognitive psychology of
object representation, most of which focuses on relatively “mid-level”
visual processes, such as those involved when people have to keep track
of individual items moving on a screen. In a review of this literature,
Leslie, Xu, Tremoulet, and Scholl (1998) conclude that: “the classical
idea of object representations as bundles of sensations, perceptual

4 Some authors (e.g. those rejecting information-processing approaches to
psychology) may argue that a theory does not need to belong to any one of Marr
levels of explanation (I thank an anonymous reviewer for this remark).
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features, or properties of any kind, might be fundamentally mistaken.
Instead, the heart of any object representation might be inherently
abstract, a kind of mental pointing at a ‘this’ or at a ‘that’.” (p.17). This
is strikingly similar to the claim in the essentialist literature (Gelman,
2003) that the representation of a natural kind like “tigers” is not a
bundle of features, but an abstract pointer to some yet-undiscovered
reality. In other words, it seems that non-descriptivism does not only
hold for “high-level” processes like categorization on the basis of nat-
ural kinds, but also for the “mid-level” processes by which the mind
organizes visual experience.

To give a simple example illustrating what Leslie et al. (1998) mean,
we think of two forks laying on a table as being two distinct objects,
even when we know the forks to be physically identical in every re-
spect, and we would be able to track the identity of each fork even as
they are moving. Therefore we do not need to rely on any physical
difference between the forks in order to conceive of them as distinct
individuals. Convergent lines of evidence have shown that humans
spontaneously represent objects in such a non-descriptivist format
(Kahneman, Treisman, & Gibbs, 1992; Pylyshyn, 2001, 2007). For in-
stance, when people are asked to track the identity of items moving
randomly on a screen, they do so mostly on the basis of spatio-temporal
continuity, and pay little attention to persistent perceptual features of
the objects: their performance does not decrease when objects change
color, size or shape during movement (Pylyshyn, 2001). Non-de-
scriptivism in object representation is already present in infancy
(Richardson & Kirkham, 2004; Van de Walle, Carey, & Prevor, 2000; Xu
& Carey, 1996).

An explanation of how people represent forks in a non-descriptivist
format, according to PET, would be the following: the mind always
implicitly attributes a different invisible essence to each fork, and can
conceive of them as being distinct only as a result of this operation.
However, this may seem like a baroque account of our ability to track
objects across space and time. Instead, theories of object representation
rely on simpler explanations, such as the fact that object-tracking works
on the basis of cues of spatio-temporal continuity (Carey, 2009; Leslie
et al., 1998; Pylyshyn, 2007).

Individual forks do not in fact have individual essences, so it is
obviously not a design requirement of object representation systems to
engage in such ontological commitment; whereas it is a design re-
quirement for this system to be non-descriptivist. By contrast, in order
to exploit the complex causal structure of some natural kinds, systems
for representing a natural kind category like “gold” are expected to
have a more complex structure, possibly coming closer to that posited
by PET.

In summary, the existence of a single algorithmic theory that ac-
counts for all essentialist intuitions appears unlikely. PET might very
well be a good algorithmic explanation of some subset of essentialist
intuitions, but one should be careful not to overestimate its explanatory
scope. For some inference problems, the structure described by PET
may be more than what is strictly required to solve that problem; for
other problems, it might not be enough, or altogether inappropriate.

Attributing to PET more explanatory power than it actually has can
be problematic, because illusions of explanatory depth mask the need
for deeper understanding of a phenomenon. For instance, the theory
that people represent biological kinds as having essences does not
predict that people will be morally opposed to the act of mixing these
essences together, so the theory does not on its own explain anti-GMOs
sentiment. Similarly, the theory that people represent individual per-
sons as having essences does not predict that these essences will be
represented as morally good, so it is at best an incomplete explanation
of “True Self” beliefs. It is likely that only an analysis of the specific
information-processing problems involved in the representation of
biological kinds, or of persons, can explain why essentialist intuitions
about GMOs or about the True Self take the forms that they do.

Note that part of the appeal of a unifying algorithmic theory stems
from the fact that essentialism has often been held to explain why

people have strange beliefs, such as beliefs in the existence of a True Self
or in the capacity for organ transplants to change one's personality. It is
tempting to think that a normative, computational theory is incon-
sistent with such phenomena: if people form erroneous beliefs, then
their cognitive mechanisms must deviate from the optimal design, and
an algorithmic theory like PET is needed to explain how. But this would
be a fallacy: one cannot use the fact that a cognitive system makes
mistakes to conclude that the system is not optimally designed. As long
as an inference system has to go beyond the data given, it has to make
informed guesses, and these will produce sound judgments in normal
conditions but are bound to produce mistakes in unusual conditions; for
instance the visual system has to infer the 3D structure of the world
from the 2D image on the retina, and this makes it easy for cunning
cognitive scientists to induce the false perception of depth. Similarly,
the fact that people's inferences about the deep reality of many entities
are often inconsistent with contemporary scientific knowledge does not
mean that their minds are flawed. Such mistaken inferences are an
unavoidable consequence of the fact that people have to make these
inferences on the basis of limited, and sometimes misleading, input.

Note that proponents of PET sometimes speculate that essentialist
intuitions are a uniquely human phenomenon (e.g., Gelman, 2003). On
the adaptationist account sketched here, one does not expect essenti-
alism to be an idiosyncratic fact about the brain of a single species.
Though preliminary, evidence for essentialist intuitions in non-human
primates (Cacchione, Hrubesch, Call, & Rakoczy, 2016; Phillips,
Shankar, & Santos, 2010) are consistent with the latter account.

8. Conclusion

The origins of essentialism in cognition are still seen by many
cognitive scientists as “something of a mystery” (Cimpian & Salomon,
2014, p.462). Yet from a computational point of view, they are
straightforward: essentialist intuitions are the unsurprising output of
well-designed cognitive adaptations for inductive inference.

Variations on this important insight have previously been mostly
used to provide a gloss of evolutionary plausibility to theories of cog-
nitive structure, in a post-hoc fashion (e.g., Bloom, 2000; Gelman,
2003). Here I have put forward a sketch of a more adaptationist ap-
proach. Because of the nature of the inference problems that many
organisms have to solve, one expects them to have cognitive mechan-
isms that construct representations that are more abstract than simple
lists of features, are sensitive to causal relationships, and informed by a
rich domain-specific background knowledge. This makes is unlikely
that essentialism comes from some special fact about the structure of a
restricted set of high-level cognitive processes in the human mind.
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