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A B S T R A C T

When judging what caused an event, people do not treat all factors equally – for instance, they will say that a
forest fire was caused by a lit match, and not mention the oxygen in the air which helped fuel the fire. We
develop a computational model formalizing the idea that causal judgment is designed to identify “portable”
causes - causes that are likely to generalize across a variety of background circumstances. Under minimal as-
sumptions, the model is surprisingly simple: a factor is regarded as a cause of an outcome to the extent that it is,
across counterfactual worlds, correlated with that outcome. The model explains why causal judgment is influ-
enced by the normality of candidate causes, and outperforms other known computational models when tested
against an existing fine-grained dataset of human graded causal judgments (Morris, A., Phillips, J., Gerstenberg,
T., & Cushman, F. (2019). Quantitative causal selection patterns in token causation. PloS one, 14(8).).

When multiple causes contribute to an event, we tend to dis-
criminate among them: for instance, we tend to say that the forest fire
was caused by the match lit by a careless camper, but we regard the
presence of oxygen in the air as a mere ‘enabling condition’ or ‘con-
tributing factor’. This suggests that we implicitly rank the different
causes of an event, as if we computed the ‘actual causal strength’ of
each of them.

Here we propose a model of how the mind computes actual causal
strength. Researchers have proposed that cognitive mechanisms for
causal judgment are well-designed for the problem of identifying
‘portable’ causes, i.e. causes that would reliably lead to an outcome,
across a wide range of different background conditions (see Hitchcock,
2012; Lombrozo, 2010). For instance, the lit match is a ‘portable’ cause
of the forest fire, because across a wide enough variety of plausible
background circumstances, striking a match inside a forest may result
in a forest fire.

We formulate this hypothesis as a simple computational theory
(Marr, 1982). Identifying portable causes requires that when one judges
how much a factor C was causally responsible for an outcome E, one
does not focus exclusively on what actually happened. One also needs
to compute the effect that a manipulation of C would have had on E in a
range of alternative possible situations. This suggests a measure of
causal strength which is similar to the ‘effect size’ measures that sci-
entists use in interpreting the results of an experiment. On average,
across possible situations, by how many standard deviation units can
one change the value of E by making a one standard-deviation change
in C? In many contexts, this is simply equivalent to computing the
correlation between C and E across the possible situations that we

imagined.
We formally express this theory as a simple algorithm, and show

that it can explain a wide range of human causal intuitions.

1. Model

We define an algorithm which takes as input an event (e.g. someone
lits a match, there is oxygen in the air, and the forest catches fire), and
delivers an actual causal strength score for a candidate cause (e.g. how
well the lit match qualifies as having caused the forest fire). We assume
that the agent making a causal judgment possesses a representation of
the causal structure of the situation she is evaluating (e.g. she knows
that lightning a match tends to generate fire, unless there is no oxygen
in the air). We use the formalism of structural equation models to model
such representations (see SI for an informal introduction, and Halpern,
2016, for a technical treatment), and refer to a specific state of a causal
system as a ‘world’. The following algorithm generates a causal score
kC→E quantifying how well C qualifies as a cause of E.

a. Simulate a large number of worlds by sampling the set of possible
worlds, according to the prior probabilities of the exogenous variables
(i.e., sample worlds in proportion to how likely each world is). For each
such world, the values of the endogenous variables are then determined
naturally according to the structural equations. For each variable V in
the causal system, compute the standard deviation σV of the variable
value across all sampled worlds (for exogenous variables, this can
simply be read off from the variable's associated probability distribu-
tion).

b. For each world generated that way, simulate a counterfactual
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‘twin’ world by making an intervention on C, which sets C to a new,
randomly sampled value. Then the values of the endogenous variables
in this twin world are set naturally according to the structural equa-
tions.

c. For each pair of worlds thus generated, compute the specific
causal effect of C on E by taking the ratio of the change in the value of E
to the change in the value of C between the two worlds ( )Δ

Δ
E
C

, and

multiplying this ratio by the standardizing factor σ
σ

C
E
.

d. The causal score of C on E is the average of all specific causal
effects across all pairs of worlds. Formally, we can denote it as kC→E and
write it as:
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where n is the number of simulated world pairs.
The first step of the algorithm generates a large number of possible

worlds, ensuring that we can look at the effect of C on E across a large
number of different background circumstances, where these circum-
stances are represented in proportion to how likely they are to arise.
The second step looks at each of these worlds in turn, asking about the
strength of the causal dependence of E on C in each world. Our measure
of causal dependence is standardized by the ratio of the standard de-
viation of C to the standard deviation of E. This standardization is akin
to what scientists do when they compute statistical measures of effect
size such as a Pearson's r; it allows measures of causal effects to be unit-
free (so that, e.g., the causal strength of temperature does not depend
on whether it is measured in Fahrenheit or Celsius). Finally, the last
step of the algorithm takes the average of all the causal dependence
scores computed in this way.

If C and E obey the “no-confounding assumption” (Pearl, 2000),
then kC→E is simply the correlation between C and E across worlds
sampled in step a (we prove this for the case of binary variables in the
SI). The “no-confounding assumption” holds when C has a causal in-
fluence on E, E does not have a causal influence on C, and no variable
has a causal influence on both C and E. Intuitively, when this as-
sumption holds, the relationship between C and E is not confounded by
third variables, so we can read the causal effect of C on E from the
correlation between C and E even in ‘observational’ data (i.e. data
which was generated without performing any intervention) (Pearl,
2000).

2. Comparison with human causal intuitions

When judging whether a factor is causal, people are sensitive to its
statistical normality (i.e. its frequency, or its probability), as well as the
statistical normality of other factors. The present model parsimoniously
explains four qualitative effects of normality on human causal judg-
ments, most of which have been replicated many times across different
contexts. We show below that it also provides a good quantitative fit to
fine-grained data from a recent set of experiments (Morris, Phillips,
Gerstenberg, & Cushman, 2019). For reasons of space, we also describe
the four qualitative effects in the context of the Morris et al. (2019) set
of experiments, since these experiments exhibited all four effects.

Morris et al. asked participants to read the following vignette:
"A person, Joe, is playing a casino game where he reaches his hand

into two boxes and blindly draws a ball from each box. He wins a dollar
if and only if he gets a green ball from the left box and a blue ball from
the right box. Joe closes his eyes, reaches in, and chooses a green ball
from the first box and a blue ball from the second box. So Joe wins a
dollar."

Participants were asked to rate, on a 1–9 scale, their agreement with
the statement “Joe's first choice (where he chose a green ball from the
first box) caused him to win the dollar”.

In a first experiment, participants saw the vignette shown above,

which describes a conjunctive structure (Joe needs to draw a green ball
from the first box, AND a blue ball from the second box, in order to
win). In a second experiment, another set of participants read the same
vignette, minimally modified so as to depict a disjunctive structure (Joe
needs to draw a green ball from the first box, OR a blue ball from the
second box, in order to win).

Participants were shown pictures of the two boxes. Across condi-
tions, the experimenters systematically varied the proportion of green
balls in the first box and blue balls in the second box. The proportion of
green balls in the first box varied from 0.1 to 1, in 0.1 increments; the
proportion of blue balls in the second box was similarly and in-
dependently manipulated. Morris et al. (2018, 2019) assessed the fit of
prominent existing computational models of causal judgment (Cheng,
1997; Halpern & Hitchcock, 2015; Icard, Kominsky, & Knobe, 2017;
Jenkins & Ward, 1965; Morris et al., 2018; Spellman, 1997) to their
dataset.

Following Morris et al. (2018), we generated predictions for two
versions of our model. The first version is the baseline version of the
model. The second version is a “normalized” version, generated with
the softmax function:
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Where kG→D is the baseline causal strength ascribed to the draw of
the green ball, and kB→D is the baseline causal strength ascribed to the
draw of the blue ball (Morris et al., 2018). We also considered a
baseline and a normalized version for all the models that are studied in
Morris et al. (see Morris et al., 2019, 2018 for a description of these
models). For each causal structure, we computed the predictions of our
model by deriving analytical expressions corresponding to the corre-
lation between “Joe draws a green ball” and “Joe wins a dollar” in the
limit of an infinity of samples (see SI for derivation). We studied the
performance of each model in each causal structure by computing the
item-level correlation between a model's predictions and participants'
average causal ratings.1

2.1. Conjunctive structure

Results are shown in Fig. 1. Both the human data and the model
exhibit two well-known effects of statistical normality on causal judg-
ment. The first effect is abnormal inflation: as “drawing green” becomes
less likely, causality ratings for “drawing green” increase (Hilton &
Slugoski, 1986; Kahneman & Miller, 1986). The second effect is super-
session: as “drawing blue” becomes more likely, causality ratings for
“drawing green” increase (Kominsky, Phillips, Gerstenberg, Lagnado, &
Knobe, 2015).

Fig. 2 shows the fit of each model to the data. The normalized
version of our model had a marginally better fit than the baseline
version (William's t-test, t(97)=1.88, p=.06), and a better fit than all
other models (all ts>6.11, all ps< .001).

2.2. Disjunctive structure

Results are shown in Fig. 3. Both the human data and the model
exhibit abnormal deflation: as “drawing green” becomes less likely,
causality ratings for “drawing green” decrease (Gerstenberg & Icard,
2019; Henne, Niemi, Pinillos, De Brigard, & Knobe, 2019; Icard et al.,
2017). They also exhibit an effect, reverse supersession, that had not been
identified prior to the study by Morris et al.: as “drawing blue” becomes
less likely, causality ratings for “drawing green” increase.

We note that the reverse supersession effect is relatively weak in the
human data, and is mostly driven by cases where “drawing blue” is

1 R code to reproduce analyses and figures is available in the electronic
supplementary materials.
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certain to occur; indeed, Kominsky et al. (2015), in a study with lower
statistical power, and that did not include candidate causes that were
certain to occur, were not able to find evidence for a reverse super-
session effect. High-powered replications of the effect are a ripe area for
future research.

Fig. 4 shows the fit of each model to the data. The best performing
models were the normalized version of our model, both versions of the
Icard model and the normalized Delta-P model. None of these four
models fit the data better than any other, all ts< .73, all ps> .47. The
next best model was the baseline version of our model, which per-
formed less well than the models above (all ∣ts∣>3.69, all ps< .001),
but better than all other models (all ts>4.03, all ps< .001).

Morris et al. (2019) also highlight interesting non-linear patterns in
their data, for both experiments. Our model mostly reproduces these
non-linear patterns (see SI).

3. Discussion

Our simple model provides a normative justification for the complex

pattern of effects of statistical normality on causal judgment: causal
cognition appears to be well-designed to identify ‘portable’ causes. Our
work also provides a normative justification for the hypothesis that
causal judgment relies on a process which samples counterfactuals ac-
cording to their normality (Icard et al., 2017).2

Another recent measure of actual causal strength, the SAMPLE
measure (Morris et al., 2018) can be easily derived from the present
model. For any causal structure in which C and E are binary variables
obeying the no-confounding assumption, and C is necessary for E, the
SAMPLE measure is equivalent to the square of kC→E (see SI).

Many existing measures of actual causal strength are based on the
notions of necessity and sufficiency (Gerstenberg, Goodman, Lagnado,
& Tenenbaum, 2015; Icard et al., 2017; Morris et al., 2018). Necessity
and sufficiency are not primitives in our model, but in the special case
where we assume binary variables, then the Δ

Δ
E
C
term used by the algo-

rithm reduces to a measure of sufficiency (when we consider an inter-
vention setting C from 0 to 1) or a measure of necessity (for an inter-
vention setting C from 1 to 0): C is sufficient (or necessary) for E if

= 1Δ
Δ

E
C

.
Why is causal judgment well-designed to identify portable causes?

The present results are consistent with several possibilities. Morris et al.
(2018) recently argued that causal judgment serves to identify our best-
bet intervention if we want to bring about an outcome but do not know
the exact state of the causal system. Our model is consistent with this
argument. On average, we can expect that an intervention on C will
result in a change of kC→E standard deviation units in E for each one
standard deviation unit change in C. Therefore, if we want to set E to a
certain value, we are generally better off making an intervention on the
variable X with the highest kX→E. However, identifying portable causes
may also be useful for a broader range of cognitive activities, such as
prediction or explanation. The proper evolutionary domain of causal
judgment remains an open question.

Closer to Marr's algorithmic level of analysis (Marr, 1982), future
research should take a closer look at which actual causal strength
measure best approximates human judgments. Our model had the best
overall fit to the Morris et al. (2019) dataset, but other models (notably
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Fig. 1. Judgments made by the normalized version of the model in the conjunctive structure, along with average human judgments. Human data are from Morris
et al. (2019), and are standardized on the [0,1] interval.
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2 At least as far as statistical normality is concerned; this could be extended to
other types of normality using recent arguments by Phillips, Morris, and
Cushman (2019)
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Icard et al., 2017) also performed well. It will be important to extend
this comparison to a wider range of experimental setups (see e.g.
Sytsma, 2019, for preliminary evidence that differences in study design
may influence causal attributions).

Although very general, our model is not a full theory of causal
judgment. Just as other models of actual causal strength, it is relatively
insensitive to the specifics of what actually happened. Imagine that Suzy
and Billy throw a rock at a bottle, but Suzy's rock gets there first.
Against intuition, the present model assigns positive causal strength to
“Billy's rock broke the bottle”, because there are possible worlds where
Billy's rock would have made a difference to whether the bottle breaks.
Future work should integrate the present ideas with theories which can
handle such cases (e.g. Halpern & Pearl, 2005).
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