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Abstract

According to counterfactual theories of causal judgment, people judge causation by

evaluating the consequences of counterfactual interventions on their representations of the

world. What is the format of these representations? Research on causal generalization

suggests that people hold ‘invariant’ representations of causal relationships that can be

flexibly composed together. We suggest that people can compute counterfactuals on the

basis of these invariant representations, and in particular they can imagine ‘disconnecting’

the causal link between two variables. Importantly, this hypothesis implies that causal

judgment is supported by richer representations than the Structural Causal Models

(SCMs) used in most counterfactual theories. We argue that this gap can explain the

shortcomings of existing counterfactual theories, for example why these theories struggle to

explain the distinction between ‘productive’ and non-productive causation. In a series of

simple experiments, we find that the consequences of variable-disconnection counterfactuals

systematically affect people’s causal judgments, even holding constant the structural causal

model describing the situation. Overall, the counterfactual framework might provide a

unifying account of human causal judgment, provided we correctly understand the mental

representations people use to imagine counterfactual scenarios.

Keywords: causality; causal reasoning; generalization; compositionality
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Productive causation and compositionality

Introduction

According to an influential family of accounts, people judge causation by engaging

in counterfactual reasoning. Consider for example the following scenario:

Rock-throwing. Suzy and Billy are playing in the garden. Suzy throws a rock at a

nearby bottle. Billy, standing in the path of the rock, could easily catch it but decides not

to. Suzy’s aim is perfectly accurate, and the bottle breaks.

It seems reasonable to say:

(1) The bottle broke because Suzy threw a rock at the bottle.

But it also seems fairly reasonable to say:

(2) The bottle broke because Billy did not catch the rock.

According to the counterfactual framework, we think (1) and (2) because we think

that:

(1’) If Suzy had not thrown a rock, the bottle would not have broken.

(2’) If Billy had caught the rock, the bottle would not have broken.

Counterfactual theories have successfully explained a wide range of phenomena in

causal cognition. This success is largely due to their use of a precise formalism for

representing causal relationships: Structural Causal Models (SCMs, Pearl, 2000). A

structural causal model represents a causal system in terms of variables and the structural

relationships between them. Many counterfactual accounts of causal reasoning assume,

implicitly or explicitly, that people represent a given causal system by constructing a causal

model of that system, and that they derive causal judgments from that causal model.

We argue that this assumption is problematic: People probably represent causal

relationships using richer representations than structural causal models. A causal model is

designed to represent a particular causal system and typically discards some information

about the more general causal laws that explain why the system behaves the way it does

(Tenenbaum et al., 2007; Griffiths and Tenenbaum, 2009, see also Maudlin, 2004). We
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argue that causal judgments are (at least sometimes) derived from a representation of these

more general causal laws.

This hypothesis sheds light on phenomena that counterfactual theories typically

struggle to explain. It is difficult for example to resist the intuition of a deep qualitative

difference between the respective causal roles of Suzy and Billy:

(1”) Suzy’s throw caused the bottle to break.

(2”) Billy’s inaction allowed the bottle to break.

Since changing either Suzy’s throw or Billy’s inaction would have prevented the

bottle from breaking, it is challenging to derive a qualitative difference between their causal

contributions from a counterfactual framework (Hall, 2004; Hitchcock, 2007). We argue

that the intuition of a difference arises from a process of compositional causal reasoning,

operating over the causal laws with which people represent the situation. To preview our

argument, the difference between Suzy and Billy is related to the fact that only the first of

these two counterfactual statements is true:

(1”’) If Suzy had not been there, the bottle would not have broken.

(2”’) #If Billy had not been there, the bottle would not have broken.

These counterfactuals, in which we mentally ‘disconnect’ some variables from the

system, are difficult to represent using the formalism of structural causal models, but they

can be evaluated using richer representations of the relevant causal laws. In a series of

simple experiments, we show that manipulating the consequences of these

‘variable-disconnection’ counterfactuals has an efffect on people’s causal judgments, even

holding constant the causal models representing the situation.

Implications

If our ideas are on the right track, they ultimately support the counterfactual

approach to causation, by offering an explanation for data that seem to create difficulties

for the approach. Because counterfactual theories struggle to account for qualitative

differences in causal intuitions (like the difference between Billy and Suzy), some
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researchers hold that we might have two different concepts of causation (Hall, 2004;

Lombrozo, 2010). In addition to a counterfactual concept of causation, we might also have

a process, or productive concept, defining causation in terms of whether there is a

continuous physical process that goes all the way from the cause to the outcome (Dowe,

1992; Salmon, 1994; Wolff, 2007).

We argue that the data that motivate causal pluralism can be more parsimoniously

explained within a purely counterfactual framework, provided we make correct assumptions

about the representations from which people compute counterfactuals.

Scope of the work

In this paper we use the term ‘causal judgment’ to refer to judgments of singular

causation, as opposed to other cognitive operations such as causal learning or inference.

That is, we assume that reasoners already know how the relevant causal system works and

what happened in the situation of interest, and must choose how to describe what caused

an event. This problem itself consists of sub-problems such as binary judgments of actual

causation (is event C a cause of outcome E or not?, e.g. Halpern and Pearl, 2005),

quantitative attribution of causal responsibility (is C a more important cause than other

causes of E?, e.g. Quillien and Lucas, 2023), and choice of causal verb (did event C cause E

or merely allowed E to happen?, e.g. Wolff et al., 2010). Our arguments are potentially

relevant to all three sub-problems; in our experiments we will mostly focus on the latter

one, as causal verb selection is often used to study judgments of productive causation (e.g.

Wolff, 2007; Beller & Gerstenberg, 2023).

The standard counterfactual approach

According to the counterfactual approach to causation, ‘C caused E’ means

(roughly) that if C had not been the case, then E would not have been the case (e.g. Lewis,

1973).1 Most modern implementations of this idea use the formalism of Structural Causal

1 We will often use letters like C to denote variables. Abusing notation slightly (as is common in the

literature) we will abbreviate C = 1 as C when context makes clear what we mean.



PRODUCTIVE CAUSATION AND COMPOSITIONALITY 6

Models (SCMs)2 to specify this idea in a computationally precise manner (for exceptions

see e.g. Goldvarg and Johnson-Laird, 2001; Gerstenberg et al., 2021; Wolff et al., 2010).

We collectively refer to counterfactual theories using this formalism as belonging to the

‘standard counterfactual framework’ (for examples see Hitchcock, 2001; Woodward, 2003;

Menzies, 2004; Halpern and Pearl, 2005; Lagnado et al., 2013; Gallow, 2021; Quillien and

Lucas, 2023).

Structural Causal Models

Structural Causal Models (SCMs) are formal objects that encode knowledge about

causal relationships, and can be used for various purposes such as inference, counterfactual

reasoning, and decision-making (Spirtes et al., 1993; Pearl, 2000). SCMs are a particular

type of causal graphical models; they are closely related to Causal Bayes Nets, which also

encode causal information but are less useful for computing counterfactuals (Pearl, 2000).

Our introduction will be relatively informal; for extended treatment we refer the reader to

Pearl (2000) or Halpern (2016).

An SCM is a representation of a causal system in terms of variables, and structural

equations that determine how the value of a variable is determined by the value of other

variables. Consider our rock-throwing scenario:

Rock-throwing. Suzy and Billy are playing in the garden. Suzy throws a rock at a

nearby bottle. Billy is standing on the path of the rock, and could easily catch it, but he

decides not to. The bottle breaks.

We can represent the causal structure of the situation in terms of variables and

structural equations. Variable R represents whether Suzy throws her rock, C whether Billy

catches the rock, and B represents whether the bottle breaks; for simplicity we treat all

2 Structural Causal Models are sometimes also called Structural Equation Models or Functional Causal

Models. Our arguments about the limitations of SCMs also apply to the closely related formalism of

Causal Bayes Nets. We focus here on SCMs because Causal Bayes Nets are generally not considered a

promising substrate for representing counterfactuals (Pearl, 2000).
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variables as binary (e.g. R is 1 if Suzy throws the rock and 0 otherwise). R and C are

exogenous variables, in the sense that we do not explicitly represent their causes. In

contrast, B is endogenous, since its value depends on the value of R and C. We express

this dependency with a structural equation:

B := R&¬C

This equation says that the bottle breaks if and only if Suzy throws the rock

(R = 1) and Billy does not catch it (C = 0). The := operator differs from a standard

equality operator because it encodes the asymmetry of causation: the equation cannot be

re-arranged in a way that would make Suzy’s throw causally dependent on whether the

bottle breaks, for example. R and C are said to be the parents of B, since they appear in

the structural equation for B.

Intervening on a variable consists in ‘cutting’ that variable from the influence of its

parents and setting it to a value of our choice. For example we could intervene to force the

bottle to remain intact, regardless of whether Suzy throws the rock, by replacing the

structural equation for B with:

B := 0

Interventions are key to formalizing the asymmetry of causal relationships: since R

is a parent of B, an intervention on R would have an effect on B, but not vice-versa.

Finally, we can represent the actual situation described in the scenario (where Suzy

throws the rock, Billys doesn’t catch it, and the bottle break) by assigning values to the

variables: in the actual world, we have R = 1, C = 0, and it follows from the structural

equation that B = 1.

SCMs, and causal graphical models more generally, have been usefully applied to

many aspects of human causal cognition, such as learning, inference, decision-making and

categorization (for reviews see e.g. Gopnik et al., 2004; Sloman & Hagmayer, 2006; Holyoak

& Cheng, 2011; Rehder, 2017). This makes causal models an attractive candidate as the

representational substrate of causal judgments.
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Counterfactuals and structural causal models

Re-expressed in the language of SCMs, the counterfactual theory of causation can

be expressed in schematic form as follows:

‘Suppose that in the actual world, C = c and E = e. If an intervention setting C to

a different value than c would result in E taking a different value than e, then C = c

caused E = e.’

For example, intervening to prevent Suzy from throwing the rock (setting R to

R = 0), prevents the bottle from breaking (B = 0). Therefore Suzy’s throw (R = 1) is a

cause of the bottle breaking (B = 1). Analogously, Billy’s inaction is also a cause of the

bottle breaking.

This basic insight has been elaborated upon in many ways by philosophers,

computer scientists and psychologists. For example, researchers have used the formalism of

SCMs to develop counterfactual theories that give the right verdict even in cases where

there is no direct counterfactual dependence between the outcome and the cause, as when

several soldiers simultaneously shoot a prisoner (Menzies, 2004; Halpern & Pearl, 2005;

Hall, 2007; Hitchcock, 2001; Gallow, 2021; Beckers & Vennekens, 2018). They have also

developed theories that account for gradation in judgments of causal responsibility

(Chockler & Halpern, 2004; Lagnado et al., 2013; Icard et al., 2017; Quillien, 2020; Quillien

& Lucas, 2023). These theories have a good track record of empirical success (e.g.

Kominsky et al., 2015; Gerstenberg & Icard, 2020; Henne et al., 2021; Quillien & Barlev,

2022; Gill et al., 2022; O’Neill et al., 2022; Konuk et al., 2023; Xiang et al., 2023).

Empirical limitations of the standard counterfactual framework.

Remember that there seems to be a qualitative difference between the causal role of

Suzy and that of Billy in our rock-throwing scenario. Empirically, the fact that the mind

makes such a distinction is suggested by the way people talk about causation (Pinker,

2007). For example, we can use causative verbs to describe Suzy’s causal role, but not

Billy’s (Rose et al., 2021):
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(1”) Suzy’s throw broke the bottle

(2”) #Billy’s inaction broke the bottle

(# signs indicate statements that sound a bit off). There is also a double

dissociation between the acceptability of the verbs ‘Cause’ and ‘Allow’ (Wolff, 2007; Wolff

et al., 2010; Livengood & Machery, 2007; Walsh & Sloman, 2011; Thanawala & Erb, 2024):

(1”’) Suzy’s throw caused the bottle to break.

(2”’) #Billy’s inaction caused the bottle to break.

(1””) #Suzy’s throw allowed the bottle to break.

(2””) Billy’s inaction allowed the bottle to break.

In sum, while Billy’s inaction is a cause of the bottle breaking, it seems like it is a

different, weaker kind of cause than Suzy’s throw. The existence of these sorts of intuitions

motivates the thesis of causal pluralism, according to which our mind hosts two different

concepts of cause (Hall, 2004; Lombrozo, 2010). Causal pluralism holds that the mind has

a notion of productive causation, instantiated when a cause produces an outcome by

transmitting a physical quantity (as in when Suzy breaks the bottle by throwing the rock),

and a weaker notion of dependence causation, where an outcome is counterfactually

dependent on the cause but there is no physical connection between them (as when Billy

allows the bottle to break by failing to catch the rock).

It seems difficult to account for the distinction between productive and

non-productive causation in terms of counterfactual interventions over causal models. A

counterfactual account seems bound to treat Billy and Suzy’s behavior in a symmetrical

manner, because the bottle would have remained intact if we had performed an

intervention on either variable (Hitchcock, 2007).

One possible way to rescue a counterfactual account would be to argue that Billy’s

failure to catch the rock is not really an event but an ‘omission’, and that omissions cannot

count as true causes (Beebee, 2004). However, an intuitive distinction between productive

and non-productive causation also arises between two non-omissive causes, as illustrated by
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a case of ‘double-prevention’:

Double prevention: Suzy and Billy are playing in the garden. Suzy throws a rock

at a nearby bottle. Billy is about to catch the rock, which would prevent it from breaking

the bottle. However, Danielle pushes Billy away, preventing him from preventing the bottle

from breaking. The bottle breaks.

Danielle’s pushing Billy away is a concrete event rather than an omission, yet people

typically view her action as a non-productive cause of the outcome (McGrath, 2003; Hall,

2004; Lombrozo, 2010; Rose et al., 2021; Thanawala & Erb, 2024).

SCM-based accounts also face difficulties when modeling judgments of actual

causation, i.e. modeling how people make a binary distinction between causes and

non-causes of an outcome (Halpern, 2016). For example Hall (2007) constructed pairs of

scenarios that are structural isomorphs: these scenarios can be represented by the same

SCM, but in one scenario we clearly have the intuition that the target event caused the

outcome, while in the other scenario we have the intuition that it did not (we give an

example in the Supplementary Information). Most theorists think these cases are

concerning; when they attempt to give formal accounts of actual causation they typically

use additional representational machinery beyond bare SCMs—like a distinction between

‘default’ and ‘deviant’ states of a variable (Menzies, 2004; Hall, 2007; Hitchcock, 2007;

Gallow, 2021, but see Blanchard and Schaffer, 2017; Wysocki, 2023).

In the next section, we explore other limitations of structural causal models. At first

sight, the material that we review there is motivated by quite different considerations than

the issues we just discussed. Instead of talking about how people make judgments of

singular causation, we will discuss what makes people good at generalizing causal

information. We will eventually circle back to where we started, arguing that this work is

relevant to questions about causal judgment.

https://osf.io/q93kh?view_only=3c9816af19ab463f9e9390740d622d86
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Compositionality and causal representation

Machines

In this section we will illustrate our arguments with examples from a toy universe of

‘machines’ with simple causal rules.3 Consider the following system:

A E P

This diagram represents a simple device where ‘nodes’ are connected to each other.

Nodes can be active (blue) or inactive (white). A node is activated if it receives an input

from at least one active node connected with a ‘generative’ link (represented as ) and

does not receive any input from an active node connected with a ‘preventative’ link

(represented as ). A node that does not receive any input can also be activated by an

external intervention. So here node E fires if it receives a stimulation from A and is not

inhibited by P. If we turn A on, it will activate E:

A E P

But if we turn P on, this de-activates E:

A E P

In these diagrams, the arrows ( and ) contain more information than in

the simple Directed Acyclic Graphs (DAG) that are often used to represent causal models.

In a DAG, an arrow between two variables means that the two variables are causally

related, but it does not specify the nature of this causal influence. The and

3 These systems are usually called ‘neuron diagrams’ by philosophers. We instead call these systems

‘machines’ to avoid possible ambiguity among our psychologist readers.
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links we use here contain substantial information about the causal relationship, specifying

whether it is generative or preventative. On the other hand, it is important to note that

the rules of our toy universe of machines are meant as illustrative examples: they do not

embody psychological claims. That is, we are not making any claims about how the human

mind represents ‘generative’ and ‘preventative’ causation in general; these terms are here

defined purely in terms of their functional role within the machine universe.

To preview our argument, consider a machine where node E only receives input

from a preventative node P . Then E is always Off regardless of the state of P , since there

is nothing that could activate E:

E P

E P

So a Structural Causal Model describing this machine is simply:

E := 0

Intuitively this SCM leaves out important information about the machine, so there

might be something wrong with SCMs as a substrate for causal representation.

Invariant causal representation

Human causal cognition is highly compositional: People can understand how a

system works in terms of how its sub-parts are combined, along with the causal laws

governing the relevant domain (Cheng, 1997; Griffiths & Tenenbaum, 2009; Lake et al.,

2017; Zhao et al., 2022; Bramley et al., 2023).

In order to be compositional, human causal cognition must support representations

that can easily be composed with each other, a bit like Lego blocks. This requirement

implies that causal representations should ideally be invariant (or modular, or
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disentangled). Invariant causal representations adequately represent the structural

relationship between two variables (or classes of variables), regardless of idiosyncratic facts

about the system in which these variables are currently embedded (Cheng, 1997;

Woodward, 2003, 2021; Sloman, 2005; Hiddleston, 2005; Bye et al., 2023; Schölkopf et al.,

2021; Goyal & Bengio, 2022; Torresan & Baltieri, 2024). A representation that is not

invariant (i.e. that only describes how the causal mechanism works in one particular

context) does not adequately support compositional reasoning, because it cannot usefully

be ‘exported’ outside of the current context.

The structural equation E := 0 is for example not an invariant representation of the

relationship between E and P in the machine above. This is because the equation says

that the state of E does not depend on P , but in fact there would be a dependence

between the two variables if we plugged more nodes into the machine, for example if we

added a generative input A:

A E P

A E P

The equation E := 0 is not an invariant repreentation because it does not tell us to

expect that the state of P might become relevant for the state of E once we add node A.

Integration functions

Good systems for causal representation tend to represent causal relationships as

‘modules’ that can be flexibly composed together. Modular representations are useful if we

have a rule that tells us how composition works. This role is fulfilled by an integration

function that specifies how the causal influence of various causes combine together to

determine the value of a variable (Cheng, 1997; Waldmann, 2007; Lucas & Griffiths, 2010).

Again, we can illustrate this notion in the context of our toy machine universe. The
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relevant integration function can be expressed in words as: ‘A node is activated if it

receives at least one stimulation from a generative link, and no stimulation from a

preventative link’. Assuming for simplicity that the machines are deterministic4, we can

specify the integration function formally as:

V := max(G1, . . . , Gn)(1 − max(P1, . . . , Pn))

Where Gi denotes a parent of V that is linked to V via a generative link, and Pi is a

parent of V that is linked to V via a preventative link. The max() operator returns the

largest value in a list of variable states; it evaluates to 0 if there is no variable within its

scope. Consider our two-node machine from earlier:

E P

In that system, the relationship between P and E is represented (graphically) by

the preventative link going from P to E. This information can be passed to the integration

function to determine that the state of E is given by:

E := max(0)(1 − max(P ))

4 In stochastic settings, commonly-used integration functions are the ‘noisy-logical’ functions, such as

Noisy-OR and noisy-AND-NOT, which take as input the ‘causal power’ parameters characterizing the link

between two variables (Pearl, 1988; Cheng, 1997; Glymour, 1998; Yuille & Lu, 2007). Noisy-logical

integration functions allow us to construct a Causal Bayes Net (CBN) describing a given causal system. In

a CBN, the value of variable is not determined by a structural equation but by a conditional probability

distribution (Pearl, 2000). Importantly, a Noisy-logical integration function, and the associated causal

power parameters, are formally distinct from the CBN that they are used to construct. For example, the

conditional probabilities making up the CBN are not typically the same numbers as the causal power

parameters. So, while causal power parameters are invariant representations, CBNs are not invariant, for

the same reason as SCMs.
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which can further be simplified as:

E := 0

Considering now the machine with the added node A:

A E P

The state of E is there given by:

E := max(A)(1 − max(P ))

E := A&¬P

In sum, when we represent a node P as being wired to another node E via a

preventative link, this representation can be used as an input to the integration function

(along with information about the other nodes wired into E), across many different

possible machines. This is unlike a structural equation, which only contains information

specific to a particular machine. Note that because the max() operator is agnostic about

the number of inputs it takes, the integration function is flexible enough to represent any

pattern of wiring, including the case where the node has no parents.5 This flexibility of the

integration function is crucial to the invariant nature of causal representations.

The integration function we gave above is just one example in the context of our toy

machine universe. People use different integration functions in different domains, and these

functions often have a different form, and are more complicated, than the one in our

example (Waldmann, 2007; Lucas et al., 2014). Our example is meant to illustrate that

good integration functions must have certain properties in order to enable the

representation of invariant causal relationships—for example they should accommodate

many possible different configurations of variables.

5 Although we note that in some causal theories, integration functions might have non-optional arguments.
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Empirically, research has established that people have systematic assumptions

about invariant integration functions (Cheng, 1997; Waldmann, 2007; Griffiths &

Tenenbaum, 2009; Woodward, 2021; Bye et al., 2023; Park et al., 2022; Cheng et al., 2022),

that they can learn new integration functions on the basis of empirical data (Lucas &

Griffiths, 2010; Lucas et al., 2014; Kemp et al., 2010; Kosoy et al., 2022; Jiang & Lucas,

2024), and that they can predict the behavior of novel systems in a compositional manner

from their knowledge of the relevant causal laws (e.g. Battaglia et al., 2013; Baker et al.,

2017; Zhao et al., 2022, 2024). Therefore, a theory of causal representation in human

cognition should be able to emulate these capacities.

Causal models fail to fully capture invariance

As our earlier examples illustrate, structural causal models do not necessarily

represent invariant causal relationships (Griffiths & Tenenbaum, 2007, 2009; Zhao et al.,

2022).6 A causal model is designed to describe how a particular causal system works, i.e.

how a particular collection of variables are causally related to each other. The causal

model contains enough information to compute what would happen in all possible states of

the causal system, but this information might not generalize to other, related causal

systems. In our toy universe of machines, a causal model describing a given machine might

not allow us to predict the behaviour of another machine, even one constructed by making

minimal modifications to the original machine.

We saw one example of this problem earlier in this section. As another example,

consider the fact that an SCM can collapse information about several causal mechanisms

into the same structural equation. We can see this by contrasting the machine below with

its structural equation representation:

6 ‘Invariance’ can have slightly different meanings in the literature, and there is a sense in which causal

models capture some of the invariance of causal relationships (see in particular Woodward, 2003).

However, causal models do not fully capture invariance in the crucial sense defined above, which allows

causal relationships to be exported from one context to the next.
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A E P

E := A&¬P

The machine is made of two causal mechanisms (the generative link between A and

E, and the preventative link between P and E), but it is described by a single structural

equation. To see why this equation discards information about the independent causal

mechanisms, consider that the equation can also describe a very different machine:

A E B

In that machine, the double border around E indicates that it is a ‘stubborn’ node7,

which requires two stimulatory signals before it fires; the structural equation E := A&¬P

can be obtained simply by defining variable P as P = ¬B.

Because the structural equation can describe different possible machines, it cannot

tell us what would happen if we disconnected the right-hand side node from one of the

machines it describes: the correct answer is different for each machine, yet they are

described by the same SCM. For the first machine, the system that results from taking

away P is:

A E

7 Formally, accomodating stubborn nodes requires a slight generalization of the integration function

described previously: we re-write this function as

V := Σ(G1, . . . , Gn)(1 − max(P1, . . . , Pn)) ≥ T

Where Σ() evaluates to 0 if its scope is empty. With T = 1, we recover the integration function for a

normal node, and when T = 2 we have the function for a stubborn node.
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In this updated machine, E fires if and only A fires. In contrast, disconnecting B

from the second machine yields the machine:

A E

In that machine, E does not fire regardless of the state of A, since it is a stubborn

node.

In sum, a structural equation is a good representation of the patterns of causal

dependence that hold between a set of variables in a particular setting, but this

representation is tethered to the idiosyncratic details of that setting; it cannot be usefully

exported to other contexts.

Putting things back together.

We have just argued that causal models are not good representations of invariant

causal relationships. Since people tend to represent invariant causal relationships, human

causal cognition must be supported by representations that are richer than causal models

like SCMs.

This claim is by no means novel (see e.g. Griffiths & Tenenbaum, 2007, 2009), but

we think that its implications for the study of causal judgment have been

under-appreciated (although see Maudlin, 2004; Hiddleston, 2005). In particular, it seems

plausible that some causal judgments are readouts from invariant representations of causal

relationships, rather than from causal models.

In the next section, we explore one way that this assumption could explain the

distinction between productive and non-productive causation. We argue that if people

construct invariant representations of causal relationships, they can use these

representations to compute what would happen if one disconnected a variable from another

variable. We then sketch a theory of productive causation that uses these

variable-disconnection counterfactuals.
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Toward a counterfactual account of productive causation

Variable disconnection

The assumption that people represent invariant causal laws makes it possible to

consider a new kind of intervention, whereby we disconnect a variable from another. In our

toy universe of machines, this operation simply consists of cutting the wire between two

nodes; for example the machine below is shown both before and after disconnection of node

P :

A E P

A E

More formally, disconnecting a variable V from its child variable E consists in

removing V from the inputs to the integration function for E.8 For the machine shown

above, the integration function says that the state of E before the disconnection is given by:

E := max(A)(1 − max(P ))

E := A&¬P

After disconnection of P , we have:

E := max(A)(1 − max())

Which simplifies to:

E := A

8 Note that variable-disconnection is not always a well-defined intervention. If we are using an integration

function where some arguments are non-optional, then the outcome of some disconnections are not

well-defined.
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Figure 1 illustrates the difference between variable-disconnection interventions and

the classical notion of intervention which changes the state of a variable (Pearl, 2000).

In our machine universe, our notion of disconnection can be easily visualized as

removing the link between two nodes. But in other contexts, disconnection might be more

abstract. Consider a physics simulation where two particles C and E exert a gravitational

force on each other. To disconnect the causal influence that particle C exerts on particle E,

we simply modify the equation that governs the behavior of particle E so that it does not

represent the gravitational force from particle C anymore. The resulting situation is

physically impossible, since particle C is still present in the scene but does not exert its

force on particle E, without us having added any other object in the scene that would

explain this. As such, the removal of the causal connection constitutes a ‘miracle’, in the

same sense that standard state-change interventions in SCMs are miracles.9 It is

nonetheless easy to reason about the behavior of the particle after either kind of

intervention, despite the physical impossibility of the overall situation.

Productive causation

Here we use the notion of variable disconnection to sketch a theory of the

distinction between productive and non-productive causation. To motivate our definition,

it will be useful to consider our double-prevention case again:

Double prevention: Suzy and Billy are playing in the garden. Suzy throws a rock

at a nearby bottle. Billy is about to catch the rock, which would prevent it from breaking

the bottle. However, Danielle pushed Billy away, preventing him from preventing the

bottle from breaking. The bottle breaks.

Intuitively, the reason Danielle’s action is not a productive cause is that Danielle’s

presence was not strictly speaking necessary for the bottle to break. This is because we

9 Remember that in the standard notion of intervention, the value of a variable is set at a value chosen by

the modeler, overriding the structural equation that describes the natural mechanism controlling the

variable value (Pearl, 2000).
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Figure 1

Difference between ‘classical’ state-change interventions (b) and variable-disconnection

interventions (c). Panel (a) represents the initial state of a causal system, and dashed grey

arrows represent disconnected causal links. b) To perform a state-change intervention on

variable B, we first disconnect B from all its parents, and set B to a state of our choice

(here, the green state). c) To perform a disconnection intervention on B, we disconnect the

link between B and one of its children (here, C). The new state of the child variable is then

determined by the relevant integration function. In contrast, the state-change intervention

is possible even if we don’t know the integration function for B, because the state of B is set

manually by the modeler. Note that technically both types of interventions involve the

disconnection of variables, but at different locations.

could have replicated the effect of Danielle’s action by directly disconnecting Billy from the

system instead. If Billy was not there in the first place, he would not have an opportunity

to catch the rock, so the bottle would still have shattered. In contrast, Suzy’s throw is a

productive cause because the presence of Suzy was necessary for the outcome. If Suzy had

not thrown her rock, the bottle would not have shattered; and we could not have made the

bottle shatter by simply removing some variables from the system instead. We generalize

and formalize these intuitions in our definition of productive causation:

Productive causation. If C = c is an actual cause of E = e, and we cannot
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replicate the effect of C = c on E = e by instead disconnecting some variables from the

system, then C = c is a productive cause of E = e.

Our first requirement is for C to count as an actual cause of E. Roughly, event C

being an actual cause of E means that C had some causal responsibility in bringing E

about, but C does not need to be the ‘main’ cause of E. We do not commit to a particular

theory of actual causation, but we agree with existing accounts that actual cause

judgments require computing state-change counterfactuals (Halpern, 2016, see also

Supplementary Information). The second requirement is that, after we have performed a

state-change counterfactual showing that C is a cause of E, we cannot ‘undo’ the effect of

that state-change counterfactual by disconnecting some variables from the system.

Our definition of productive causation is a preliminary one, and is relatively

informal. We sketch a more formal definition in the Supplementary Information (along

with examples of its application), but our goal is not to propose a definition that will

survive all potential counter-examples—if the history of causal modeling is any guide, we

suspect that doing so would be very difficult (Paul & Hall, 2013). Instead, in the next

sections we will focus on experimental tests of the core idea underlying this definition,

namely that intuitions about productive causation come from thinking about

counterfactuals that disconnect a variable from the system.

Motivation for the experiments

Below we report a series of simple experiments designed to provide

proof-of-principle support for our proposal. We ask participants to reason about simple

‘machines’, of the kind we introduced above. We predict that manipulating the

counterfactual consequences of disconnecting a node from the machine will influence

whether people construe a cause as a productive or non-productive cause. Importantly, this

should be the case even holding constant: i) everything that happened in the actual world,

ii) the causal model that describes the machine.

This prediction is at odds with standard counterfactual theories grounded in causal

https://osf.io/q93kh?view_only=3c9816af19ab463f9e9390740d622d86
https://osf.io/q93kh?view_only=3c9816af19ab463f9e9390740d622d86
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models: these theories predict that causal judgments should only track the counterfactuals

that change the state of a variable. Our manipulation leaves intact the causal model

describing a system, and therefore it does not affect the truth-value of state-change

counterfactuals.

Because it is un-natural to explicitly ask participants about ‘productive causation’,

we ask them to select the causal verb (CAUSE/ALLOW/ PREVENT) that better

describes a given causal relationship (following previous research, e.g. Goldvarg &

Johnson-Laird, 2001; Wolff & Song, 2003; Wolff et al., 2010; Kuhnmünch & Beller, 2005;

Sloman et al., 2009; Cao et al., 2023; Beller & Gerstenberg, 2023; Thanawala & Erb, 2024).

We make the assumption that when an event qualifies as a productive cause of an outcome,

people are more likely to judge that the event CAUSED the outcome, relative to other

verbs such as ALLOW. We leave a complete account of the semantics of these causal verbs

for future research. Data and analysis code for all studies are available at

https://osf.io/nsfx6/?view_only=3c9816af19ab463f9e9390740d622d86.

Study 1

We asked participants to make judgments about a simple machine in which a node

A is wired onto a node E, see Figure 2. Node A can be in either of two states, and only one

of them is associated with the activation of node E. We manipulate the consequences of the

variable-disconnection counterfactual in which A is disconnected from E. Importantly, this

manipulation does not affect the state-change counterfactuals, i.e. the consequences of

changing the state of A in the full machine; see Figure 2 for illustration.

We implement our manipulation by allowing participants to observe what happens

in a single-node machine where E is the only node. We call the state of E in such a

machine its ‘default state’, dfE.

We predict that this minimal manipulation will influence the causal judgments that

participants make about the full machine. In a situation where disconnecting A would

change the value of E, participants should be more likely to say that the state of A Causes

https://osf.io/nsfx6/?view_only=3c9816af19ab463f9e9390740d622d86
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Figure 2

Schematic illustration of the causal dynamics in Study 1. Hand icons highlight the changes

relative to the critical trial machine configuration, and were not shown to participants. In

this example, E=1 in the actual world, but the experiment also had a condition where E=0

in the actual world (and the state-change counterfactual has E=1).

the state of E, compared to a situation where disconnecting A would not change the state

of E. In other words, participants should be especially likely to say that the state of A

Causes the state of E when the actual state of E does not match its default state.

This prediction follows from our definition of productive causation. Consider for

example the situation depicted in Figure 2. First, in the the dfE = 1 condition, the state of

E in the actual world matches its default state. A state-change counterfactual setting A to

the green state would de-activate E. However, we could then re-activate E simply by

disconnecting node A. Therefore A being purple is not a productive cause of E’s

activation. Consider now the dfE = 0 condition, in which the actual state of E does NOT

match its default state. In this situation, a state-change intervention making A green

de-activates E, and we cannot then re-activate E by disconnecting A from the machine.

Therefore A being purple is a productive cause of E’s activation.

In contrast, SCM-based approaches to causal judgment predict that our

manipulation should have no effect, since our manipulation does not affect the truth-values

of counterfactuals that change the states of variables.
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Methods

Participants were introduced to a simple world of ‘machines’ composed of nodes

that can be wired together. Each participant interacted with two different sets of machines:

in one set, the default value of the effect node E was 0 (dfE = 0 condition), while in the

other set, the default value of E was 1 (dfE = 1 condition). For each set of machines,

participants first were able to learn the rules that govern the machines by observing

different machines in different states (training phase); then they were asked to make causal

judgments about different configurations of the full two-node machine (test phase).

The training phase consisted in a prediction task with feedback. Later in the test

phase, participants were shown the full two-node machine, for which the state of both

nodes was known. They were asked to select what was the best explanation for the state of

the lower-most node. Participants had to select the explanation from a multiple-choice

menu; each explanation related the state of the lower-most node (called E) to the state of

the node above (node A). The task consisted in judging whether the state of node A stood

in a [cause/allow/make no difference/prevent] relation to the state of node E.

In sum, our design had two within-subject manipulations. We manipulated the

default value of E (dfE = 0 vs dfE = 1), and the actual-world value of E in the test trial

(E = 0 vs E = 1).

Procedure

Participants first completed a consent form, and read a short set of instructions.

Then they completed the main task (described below) twice, each time with a different set

of machines (one where dfE = 0, another where dfE = 1). The sets were differentiated by

the shape of their nodes: one set had diamond-shaped nodes, while the other set had

circle-shaped nodes (shape assignment was randomized). We randomized whether the

dfE = 0 or dfE = 1 condition was presented first.

The main task consists of a training phase and a test phase. In the training phase,

participants completed 16 prediction trials. Each prediction trial displayed one machine,
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for which the state of all nodes was displayed except for the lower-most node, which was

greyed and had an ‘?’ sign inside. Participants were asked to predict whether that node

was ON or OFF, by clicking on one of the two corresponding buttons. Clicking the button

revealed the node’s state: the node turned orange if it was ON, and white if it was OFF.

The participant was also told whether their prediction was correct.

Prediction trials involved two different machines:

-a machine composed of only a single node (that we will call ‘E’),

-a machine composed of two nodes: node A being wired into node E.

The two-node machine could be in two different states: node A could be in one of

two states (a1 or a2, indicated by color), and node E could be ON or OFF (one state of A

was associated with E being off, and the other state was associated with E being on).

Machines were deterministic, such that for the same configuration the same prediction was

always correct (participants were not told this explicitly). Therefore there were three types

of trials: the single-node machine, and the two-node machine in two different states.

Participants made 8 observations of the single-node machine, as well as 8 observations of

the two-node machine (4 observations per state).

On each trial, the screen also displayed the current trial number, as well as the

number of questions correctly predicted so far (see Figure 3a).

In the test phase, each trial displayed the two-node machine, and the state of each

node was known. Participants were asked to select the explanation that they thought ‘best

describes what is happening’, among the following four explanations:

-A being [color] causes E to be [off/on]

-A being [color] makes no difference to the state of E

-A being [color] allows E to be [off/on]

-A being [color] prevents E from being [on/off]

Where [color] was node A’s current state, and [off/on] was E’s current state (or, for

the ‘prevent’ statement, its opposite). The order in which these statements were presented
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Figure 3

Screenshots of the experimental interface, Study 1. a) Training phase; b) Test phase.

onscreen was the same across all trials, but was randomized at the beginning of the study

for each participant. Words shown in bold above were also bolded to participants, and

[color] was displayed in a font of the corresponding color.

The two-node machine can be in two configurations: either node A is in state a1,

and node E is on, or node A is in state a2, and node E is off. Therefore there were two test

trials, one for each configuration (their order was randomized). The state of node A was

indicated by two colors, for example the node might be black if in state a1 and turquoise if

in state a2. Color assignment was randomized as follows. There were two pairs of colors:

black/turquoise and green/purple. Which pair was assigned with which set of machines

was randomized. Within each set, we also randomized which color was assigned to which

state (except for node E, for which orange also meant On and white always meant Off).

During each test trial, the top of the screen displayed a summary of the
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observations the participant had made before. This reminder helped make salient the

default value of the E node (see Figure 3b).

In between the two sets of machines, participants were told that the new machines

they were about to see may obey different rules than the ones they had seen so far.

After participants completed the task for the two different sets of machines, they

completed a short demographic questionnaire and were re-directed to Prolific for payment.

Participants

We recruited 79 US residents from Prolific (41 female, 2 other; mean age=40,

SD=12). Participation was restricted to users with a 90%+ approval on the platform, who

previously completed between 50 and 1000 studies. Participants were compensated

GBP0.85, and median completion time was 7 minutes. In all experiments sample size was

chosen to be similar to that used in recent experiments on causal verb selection with

similar designs (Beller & Gerstenberg, 2023; Cao et al., 2023).

Results

Overall, participants seemed to learn the task, with 86% correct predictions in the

last trial of the training phase. We excluded from subsequent analysis participants who did

not perform significantly better than chance in the training phase, i.e. participants who got

fewer than 65% trials correct (this is the threshold below which a binomial test results in a

p-value larger than .05). We excluded 10 participants this way, resulting in a final sample

of 69 participants.

Figure 4 displays the results for the test phase. Consistent with our hypothesis, we

find that causal judgments are affected by whether the actual value of E matches its

default value. In test trials where E’s actual value is 0, proportions of Cause and Prevent

choices are higher when E’s default value is 1 (dfE = 1), compared to when dfE = 0.

Proportions of Allow and Make No Difference follow the opposite pattern. When E’s actual

value is 1, most of these trends reverse: proportions of Cause choices are higher when E’s

default value is 0, while proportions of Allow and Make No Difference are higher when E’s
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Figure 4

Frequency of responses across conditions, in the test phase, Study 1. Error bars represent

standard errors. The dashed line represents expected frequency under random selection.

The colors of the upstream node, and the shapes, are there for illustration, and were

randomly assigned in the study.

default value is 1.

To formally evaluate these patterns, we performed a mixed-effects multinomial

logistic regression using the brms package (Bürkner, 2017), with default priors. The model

predicted participants’ response from the actual value of E, the default value of E, as well

as their interaction, and participant-level random intercepts. Using approximate

leave-one-out cross-validation, we find that this model has a better fit than a null model

without the interaction term (elpd=-264 vs elpd=-287, for the full and null model
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respectively).10 In sum, whether the actual value of E matches its default value appears to

meaningfully influence the relative proportion of responses.

To further unpack this result, we ran a series of mixed-effect logistic regressions, to

assess what influenced the choice to select one response in particular, for example what

influenced the decision to pick ‘Allow’ as opposed to the other three options. So, in the

regression model for ‘Allow’, the outcome variable was a dummy variable with value 1 if

the participant chose ‘Allow’ and 0 if the participant picked any other option. Again, the

predictors were the actual and default value of E, as well of their interaction, and we used

participant-level random intercepts.

We find that the interaction between E’s actual and default value has a significant

effect on the probability of selecting ‘Cause’, β = -2.66, p < .001, on the probability of

selecting ‘Allow’, β = 1.69, p = .041, and on the probability of selecting ‘Make No

Difference’, β = 5.80, p < .001. In contrast, it only had a marginally significant influence

on the probability of selecting ‘Prevent’, β=-1.61, p = .06. Importantly, the sign of the

interaction term is negative for Cause and Prevent, while it is positive for Allow and Make

No Difference. Participants were more likely to select Cause or Prevent when E’s actual

value did not match its default value, but were more likely to select Allow or Make No

Difference when E’s actual value matched its default value.

One possible interpretation of the data is that participants selected Cause to a

lesser extent in some conditions because they did not understand the relevant state-change

counterfactuals in these conditions. For example, in conditions where E’s actual state

matches its default state, some participants might mistakenly think that changing the state

of A would not change the state of E. In order to assess this proposal, in the

Supplementary Information we analyze participants’ responses as a function of their

performance in the training phase (which indexes their ability to understand the

10 We implement cross-validation using the loo function in brms, which uses Pareto-smoothed importance

sampling (Vehtari et al., 2017).

https://osf.io/q93kh?view_only=3c9816af19ab463f9e9390740d622d86
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consequences of changing the state of A). We find that the pattern of effects predicted by

our theory are, if anything, more pronounced in participants who performed well in the

training phase. Therefore, our results are unlikely to be due to a mis-representation of the

state-change counterfactuals.

Supplementary Experiments

In the Supplementary Information, we report the results of two conceptual

replications of Study 1 that address possible alternative interpretations for our results. In

Supplementary Study 1b, we ask participants to reason about contrastive causal

statements: instead of evaluating (e.g.) ‘A being green causes E to be On’, they evaluate

‘The fact that A is green instead of purple causes E to be On’. This wording highlights the

relevance of state-change counterfactuals, and therefore Study 1b constitutes an especially

strong test of our claim that people also consider variable-disconnection counterfactuals

when making causal judgments.11

Supplementary Study 1c addresses the possibility that our results are due to

superficial patterns of co-variation. In Study 1, manipulating the default value of E also

changes the on-screen co-variation between the state of A and the state of E: for example

in Figure 3b (with dfE = 1), node E is Off only when node A is green, but if dfE was 0 then

node A being green would co-vary less strongly with E being Off. Therefore, in Study 1c

we let node A have three potential states, in a way that allows us to maintain co-variation

constant while manipulating E’s default value.

11 We ran this replication experiment to rule out a possible explanation for the effect of our manipulation

on participants’ judgments in Study 1: some participants might have mis-interpreted the question as asking

whether the fact that node A was wired caused the outcome. However, even in the original Study 1 this

alternative explanation cannot account for all findings. In particular, our manipulation also had an effect

on the ratio of Cause to Allow selections. When node A fails to prevent the activation of E (dfE = 1,

E = 1), it seems strange to say that the fact that node A was wired into node E allows E to be ON.

Therefore the mis-interpretation account would predict that rates of Allow selections should be highest in

trials where disconnecting A changes the state of E, the opposite of what we actually find.

https://osf.io/q93kh?view_only=3c9816af19ab463f9e9390740d622d86
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In both experiments we replicate the results of Study 1. Taken together, the data

from the three experiments support the proposal that causal judgment is influenced by the

consequences of variable-disconnection counterfactuals.

Discussion

Under many counterfactual theories, causal judgments are derived from a causal

model representation of the situation. This approach predicts that only counterfactuals

that change the state of a variable should matter for causal judgment. The consequences of

counterfactuals that disconnect a variable should have no influence of causal judgment,

holding constant the state-change counterfactuals.

We tested this assumption by asking people to choose which of different causal

expressions (Cause, Prevent, Allow, Make No Difference) best characterizes a given causal

relationship. We find that manipulating the consequences of variable-disconnection

counterfactuals did have an impact on people’s choices, even holding constant the

underlying state-change counterfactuals. People were more likely to describe an event as

Causing an outcome when disconnecting the corresponding variable from the system would

have changed the outcome; they were comparatively more likely to use Allow and Makes

No Difference when disconnecting the variable would not have changed the outcome.

In Study 2, we attempt to conceptually replicate this finding in a more complex

causal structure.

Study 2

In this Study, we consider a machine in which a generative node G and a

preventative node P are wired onto the effect node E:

G E P

such that E is active if G is active but P is inactive. Intuitively, in a situation with

G = 1, P = 0, it seems that G being active caused E to be active, while P being inactive



PRODUCTIVE CAUSATION AND COMPOSITIONALITY 33

allowed E to be active. We claim that this difference comes from the fact that people

reason about variable-disconnection counterfactuals: E would still be active if P were

disconnected, but not if G were disconnected.

However, this intuitive difference between the causal role of G and P might come

from incidental aspects of the scenario, such as the fact that G is active while P is inactive

— perhaps people treat absences as fundamentally different from positive events.

Therefore, we design a minimal version of this scenario where G and P each have two

symmetrical states, neither of which is explicitly labeled as active or inactive (although for

the convenience of readers we will still use 0 and 1 to refer to the node states). We also

refrain from giving explicit labels such as ‘generative’ and ‘preventative’ to participants.

We only manipulate the consequences of variable-disconnection counterfactuals: in the

state with G = 1 and P = 0, node E would still be active if we disconnected P, but not if

we disconnected G; see Figure 5.

In the critical trials, we show participants a situation where G = 1, P = 0, and

E = 1, and we ask them which causal verbs best describe the causal role of G and P.

Importantly, both nodes play a symmetrical role in terms of state-change counterfactuals

(intervening on either node would set E to 0, see top of Figure 5), such that an SCM-based

account of causal judgment predicts they should be treated similarly.

We manipulate participants’ belief about variable-disconnection counterfactuals by

allowing them to observe a pair of two-node machines, in which only one of either G or P is

wired into E, see Figure 5 (bottom). Participants can thus see that the presence of node G

(when in the right state) is sufficient to activate E, while the presence of P isn’t. We

predict that this information will be sufficient to elicit a difference in judgments when

people are asked about the causal roles of G and P in the full machine.

Procedure

The procedure was similar to Study 1, but because of the increased complexity we

added an instruction phase at the beginning to help participants understand the causal
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Figure 5

Schematic illustration of the causal dynamics in Study 2. Relative to the state of the

machine in the actual world, state-change counterfactuals have the same consequences for

G and for P, but variable-disconnection counterfactuals have different consequences:

disconnecting G, but not P, changes the outcome. Hand icons highlight the changes relative

to the critical trial machine configuration, and were not shown to participants. Letter

assignment was randomized, and we used different letters than G and P.

structure. As such the experiment featured an instruction, a training and a test phase.

During the training phase, participants were allowed to observe all 9 possible

configurations of the system, while in the instruction and test phase, we let participants

observe 6 different configurations (to avoid overwhelming them).

The 6 different machine configurations participants observed in the instruction and

test phases were the following.

-A one-node machine with just E: its default value is 0.
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-Two two-node machines: one with G wired into E and another with P wired into E.

In the first machine, G = 1, E = 1; in the second machine P = 0, E = 0.

Finally, they observe the same three-node machine in three different states:

G = 1, P = 0, E = 1

G = 1, P = 1, E = 0

G = 0, P = 0, E = 0

During the instruction phase, these observations were presented on two screens.

One of the screens showed all of the three machine configurations in which G = 1, while

the other screen showed all three machine configurations in which P = 0. Each screen also

showed the single-node machine. The order of presentation of machines on each screen was:

first, the single-node machine, then the two-node machine, and then the two three-node

machines (the three-node machines were presented in randomized order).

After this initial instruction phase, participants completed a training phase, similar

to the training phase of Study 1. The training phase elicited predictions about all 9

possible machine configurations, including configurations that participants had not

observed before (for example, a two-node machine with G = 0). Participants saw each

machine configuration 3 times, for a total of 27 trials.

The test phase was similar to the test phase in Study 1. In the critical trials,

participants were shown the three-node machine with G = 1, P = 0, E = 1. They were

asked to make a causal judgment (choose the most appropriate causal verb) for both G = 1

and P = 0 (on separate pages—the order of presentation was randomized). The test phase

also contained similar trials for all other three configurations of the three-node machine,

but the critical trials were always presented first. Other trials were presented in

randomized order. Each trial featured a reminder of the 6 observations presented in the

instruction phase at the top of the screen.

Hypotheses and data exclusion criteria for this study were pre-registered

(https://osf.io/a3prm/?view_only=208fc61e8e6644cf81eb513a95a69d06).

https://osf.io/a3prm/?view_only=208fc61e8e6644cf81eb513a95a69d06
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Participants

We recruited 100 US residents from Prolific (49 female, 2 other, mean age=40,

SD=16). Eligibility criteria were the same as in previous studies, and participants were

compensated GBP1.00 for participation. Median completion time was 8 minutes. Following

our pre-registration, we excluded from analysis 15 participants whose proportion of correct

answers on the prediction task was no better than chance (n = 12), or whose answers in

the prediction task showed no positive correlation with the correct answers (n = 8).

Results

Participants gave the correct answer in the prediction task on 91.5% of trials,

indicating that they overall understood the causal structure—this is significantly higher

than chance performance of 50%, p < .001, binomial test. Participants also correctly

generalized: on prediction trials featuring machine configurations that did not appear in

the instruction phase, participants gave the correct answer 96.7% of the time (higher than

chance, p < .001). This good generalization performance suggests that participants’

inductive biases successfully guided them to our intended causal structure.

Figure 6 displays participants’ judgments for the critical trials, i.e. their judgments

for the machine configuration with G = 1, P = 0, E = 1. Participants described the causal

role of the generative and the preventative node very differently. For the generative node,

the modal answer was Cause, while for the preventative node the modal answer was Make

No Difference, closely followed by Allow.

A mixed-effects multinomial logistic regression confirmed that participants made

different choices for the generative and the preventative node. Using approximate

leave-one-out cross-validation (loo), we find that a model including node type has a better

fit than a null model that does not include node type as a predictor (elpd=-191 vs

elpd=-221, for the full and null model respectively). Follow-up mixed-effects logistic

regressions show that people selected Cause more often (β=2.38, p < .001), and selected

Make No Difference less often (β=-3.49, p < .001) for the generative than the preventative
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Study 2, Frequency of responses across conditions, machine configuration with G = 1,

P = 0, E = 1. Error bars represent standard errors. The dashed line represents expected

frequency under random selection. Both charts display the same data, in a different format;

the chart on the right displays the frequency of participants making a given pair of

selections.

node. There was no significant difference in the frequency of Allow and Prevent selections

across node type (p=.87 and p=.39 respectively).

Interestingly (and contrary to our pre-registered predictions), the proportion of

Allow statements did not change across condition. We find, however, that many of the

participants who selected ‘Allow’ for the generative node selected ‘Make No Difference’ for

the preventative node (n=14/33), while many of the participants who selected ‘Allow’ for

the preventative node selected ‘Cause’ for the generative node (n=15/32). In other words,

these ‘Allow’ judgments were not systematically made by the same participants (only 14

participants answered ‘Allow’ for both nodes), see Figure 6 right panel. We also find that

the probability of selecting Allow is inversely related to performance in the training phase

for the generative node, while it is positively related to training-phase performance for the
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preventative node, see Supplementary Information.

In the Supplementary Information, we also run additional analyses that suggest

that misunderstanding of the causal structure is unlikely to explain our results.

Figure 7 shows the results for the other three machine configurations. In these

configurations, the most interesting comparison for our purposes is between the role of the

generative node in G = 0, P = 0, E = 0 and that of the preventive node in G = 1, P = 1,

E = 0. These two situations are interesting because they are ‘mirror images’ of each other.

In the first situation, E is counterfactually dependent on G (setting G to 1 would set E to

1), while it is counterfactually dependent on P in the second situation (setting P to 0

would set E to 1). A purely SCM-based approach would thus treat these nodes as playing

an equivalent causal role. Instead we find that participants are more likely to say that the

state of the preventative node prevented E (in G = 1, P = 1) than to say that the state of

the generative node prevented E (in G = 0, P = 0).
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Study 2, Frequency of responses across conditions, non-critical trials. Error bars represent

standard errors. The dashed line represents expected frequency under random selection.

‘nd’: ‘make no difference’.

To formally assess this effect, we ran a mixed-effects multinomial logistic regression

https://osf.io/q93kh?view_only=3c9816af19ab463f9e9390740d622d86
https://osf.io/q93kh?view_only=3c9816af19ab463f9e9390740d622d86
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with the situation (G = 0, P = 0 vs G = 1, P = 1) as a predictor, and participant-level

random intercepts; we only included judgments for the generative node for the first

situation, and for the preventative node for the second situation. We find that this model

has a higher fit to the data than an equivalent null model that does not include situation

type as a predictor (elpd = -195 and elpd = -203 for the full and null model respectively).

Follow-up mixed-effects logistic regressions show that participants were more likely

to select Prevent for the preventative node in the G = 1, P = 1 situation than for the

generative node in the G = 0, P = 0 situation, β = 1.25, p = .002. Conversely, participants

were more likely to select ‘Make no difference’ for the generative node in the G = 0, P = 0

situation, than for the preventative node in the G = 1, P = 1 situation, β = -2.55, p < .001.

Note that technically, neither node is a productive cause of E = 0 according to our

definition (since 0 is the default state of E). Yet the two situations are not the same in

terms of variable-disconnection counterfactuals, since disconnecting P changes the outcome

in the G = 1, P = 1 situation, while disconnecting G does not change the outcome in the

G = 0, P = 0 situation. This suggests that the mind makes fine-grained distinctions that

go beyond the distinction between productive and non-productive causation, but that these

distinctions could in principle be captured by a theory based on variable-disconnection

counterfactuals.

The other comparisons are not as crucial for our hypothesis, for example within

G = 0, P = 0, the variables G and P play an asymmetric role within the SCM (only an

intervention on G would change the outcome). In G = 0, P = 1, the variables play a

symmetric role in terms of standard counterfactuals, but they also have similar

variable-disconnection counterfactuals (E remains inactive regardless of which node we

disconnect). In that latter situation there was no evidence that node type influenced

participants’ judgments. A mixed-effects multinomial logistic regression with node type as

a predictor had a slightly worse fit (elpd = -218) than a null model without node type

(elpd = -214).
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While our investigation is focused on variable-disconnection counterfactuals, the

G = 0, P = 0 situation serves as a sanity check showing that participants are still also

sensitive to state-change counterfactuals in our setting. In the G = 0, P = 0 situation, the

variable-disconnection counterfactuals are the same (disconnecting either node leaves the

outcome unchanged), but the state-change counterfactuals diverge (setting G to 1 activates

E, while setting P to 1 does nothing). Accordingly, people are much more likely to say

that the state of P made no difference to E, than to say that the state of G made no

difference to E, b = 2.05, p < .001, mixed-effects logistic regression.

Discussion

Study 2 provides more evidence that variable-disconnection counterfactuals can

influence people’s causal judgments, even while holding constant the state-change

counterfactuals.

We asked participants about an outcome caused by two other variables. One

variable was a ‘generative’ variable which could bring about the outcome on its own, while

the other variable was a ‘preventative’ variable which could only prevent the outcome. In a

situation where the outcome happens, participants were most likely to say that the

generative variable ‘causes’ the effect, and that the preventative variable ‘allows’ the effect

or ‘makes no difference’. Yet from the point of view of a Structural Causal Model, the two

variables play a symmetrical role.

Since the state of the causal variables was denoted by colors (instead of the

variables being ON or OFF), our finding cannot be explained by a tendency to ascribe

more causality to variables that are present rather than absent. The effect cannot either be

explained by the verbal labelling of the variables, since we never used terms like

‘generative’ or ‘preventative’ in the instructions given to participants. In sum, it seems

that an SCM-based approach to causal language cannot explain the present results.

We also investigated situations where the outcome fails to occur. In one of the

situations, the generative and preventative nodes are both inactive, while in the other
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situation, both nodes are active. From a structural equation perspective, the generative

node (in the first situation) and the preventative node (in the second situation) play the

same causal role. However, we find that participants are more likely to describe the

preventative node than the generative node as preventing the outcome. Again, this result

cannot be explained by differences in the labelling of the nodes. This finding provides a

conceptual replication of similar findings by Walsh and Sloman (2011), in a much more

minimal and controlled setting.

Study 3

In Study 3, we look at the reverse direction: We show participants a causal

judgment describing a situation, and we see whether they make inferences about a

counterfactual situation where a variable is disconnected from the system.

Intuitively, if you are told that Suzy caused the bottle to break, while Billy allowed

the bottle to break, you might infer that removing Suzy from the situation would have

prevented the breaking, whereas removing Billy from the situation might not have. Here

we look at whether such inferences occur even with the minimal stimuli of our toy machine

universe.

Specifically, we show participants a three-node machine, with nodes A and C both

wired into node E. We show participants all 4 possible states of that machine. Nodes A

and C can take either of two states (a1 or a2, c1 or c2); E is On whenever A = a1 and

c = c1, and Off otherwise.

Crucially, for the state of the system where E = 1, we tell participants that A = a1

ALLOWS E to be ON while C = c1 CAUSES E to be ON. Then we ask participants to

make predictions about reduced machines, constructed by disconnecting either A or C from

the original machine.

We predict that in trials where A = a1 or C = c1, participants will be more likely to

predict that E is On when it is connected to the C node than the A node. In other words,

a node that was described as having caused the outcome is more likely to be predicted to
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lead to the outcome on its own, compared to a node that was described as having allowed

the outcome.

Procedure.

Participants were first introduced to the basic setup of the machine universe, as in

the previous experiments. We also told participants that different nodes can have different

effects on an outcome, and for illustration we show them a node that can turn another

node on, and a node that can turn another node off (these nodes have different colors and

shapes than the nodes used in the main machine later in the study).

Then we showed participants the four possible states of the main machine, where

nodes A and C are wired into node E. The nodes were not identified by letters to

participants but had different shapes: A and C are a triangle and a square

(counter-balanced), while E is a circle. Node states were denoted by colors, where a1 and c1

are blue and green (counter-balanced), while a2 and c2 are black and purple

(counter-balanced). E is orange when it is On and white when it is Off. We also

counter-balanced the position of A and C on the screen (left or right).

Then, participants completed a training task like in previous studies, where they

made a binary prediction for the state of node E in each of the four possible states of the

full machine, each presented four times (for a total of 16 trials, presented in randomized

order).

After the prediction task, an ‘exposition’ trial provided an explanation for why E is

On in the configuration where A = a1 and C = c1 (see Figure 8a). We told participants

(e.g.):

‘The fact that the triangle is blue CAUSES the circle to be On,

The fact that the square is green ALLOWS the circle to be On.’

(the actual assignment of the shapes and colors was randomized).

This exposition trial was followed by the four main test trials, in which participants

were shown a two-node machine that is the same as the full three-node machine they saw
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Figure 8

Study 3, partial screenshots of the experimental interface for a) the exposition trial, b) the

introduction of the new node that precedes the far-transfer trials.

before, except with one of the nodes removed. That is, they saw A → E or C → E,

depending on the trial. There were two trials per machine, one for each possible state of

the upper node.

On each test trial, node E (the circle) was greyed, with a question mark at the

center of the node (just as in the prediction trials). Participants were asked whether they

think the circle is On or Off. Following this binary choice, they were asked to rate their

confidence in their choice, on a 1-7 Likert scale from ‘not at all’ to ‘very confident’. Each

trial was presented on a separate page, and the order of the main prediction trials was

randomized. On each trial, the top of the page displayed a reminder of the ‘allow’ and

‘cause’ judgments made in the exposition trial.

For exploratory purposes we also included two ‘far-transfer’ trials, where
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participants make predictions about a machine in which A or C are wired into E along

with another, new node. Specifically, the page directly after the main test trials introduced

another generative node, an olive diamond node connected to the circle, which is On (see

Figure 8b). In the two ‘far-transfer’ trials that followed introduction of this new node,

participants saw two three-node machines where either the A or C node, with state a2 or

c2, have been added to this new machine. They again had to predict whether the circle is

On or Off and rate their confidence.

The order of the far-transfer trials was randomized. At the top of the page, there

was a reminder of the judgments made in the exposition trial, as well as a display of the N

→ E machine (N is the new diamond node). Then participants completed a short

demographic questionnaire and were taken to Prolific for payment. Hypotheses, statistical

transformations and data exclusion criteria for this study were pre-registered at

https://osf.io/cya8k/?view_only=6fc28c92f2b5405bb5652d6232ee2fdf.

Participants

We recruited 95 US residents from Prolific (47 female, 2 other, mean age=39,

SD=18). Eligibility criteria were the same as in previous studies, and participants were

compensated GBP0.75 for participation. Median completion time was 6 minutes. Following

our pre-registration, we excluded from analysis 11 participants whose performance in the

training task was not significantly above chance, for a final sample of 84 participants.

Results

Participants gave the correct answer in the training task on 93.7% of trials

—significantly higher than chance performance of 50%, p < .001, binomial test.

Figure 9 displays the results from the test phase. Following our pre-registration,

participants’ responses were coded on a scale from 1 to 14, where 1 represents full

confidence in ‘Off’ and 14 represents full confidence in ‘On’.12 We call ‘Allow trials’ those

12 Specifically, a rating from a participant predicting ‘On’ was coded as 7+confidence, while a rating from

a participant predicting ‘Off’ was coded as 8-confidence.

https://osf.io/cya8k/?view_only=6fc28c92f2b5405bb5652d6232ee2fdf
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Figure 9

Propensity to predict ‘On’ on test trials, as a function of the causal verb used to describe

the node from the original machine, Study 3. The exposition trial is shown at the top, the

test trials at the bottom. Dots represent individual ratings. Ratings above the dashed line

represent participants who predicted ‘On’, ratings below the dashed line are for participants

who predicted ‘Off’. Distance from the dashed line represent confidence in one’s answer.

trials where the machine features node A, which was previously described as Allowing the

outcome, and we call ‘Cause trials’ those trials where the machine features node C,

previously described as Causing the outcome.

Consistent with our pre-registered prediction, when the nodes have the same value

as in the exposition trial (A = a1 or C = c1), participants predicted that the circle node

would be On to a greater extent in Cause trials (M=11.30, SD=3.73) relative to Allow

trials (M=8.98, SD=4.98), V=185.5, p < .001, paired-samples Wilcoxon signed-rank test13;

13 Because our dependent variable is not normally distributed, we use a non-parametric test instead of a
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see ‘Near-transfer, positive’ panel on Figure 9.

For robustness, we also compared the relative frequencies of ‘On’ and ‘Off’

predictions (ignoring confidence ratings) across these two conditions, finding that

participants were more likely to predict On in Cause trials (N=71/84) than Allow trials

(N=54/84), McNemar test, χ(1)=23.9, p < .001. This result suggests that the causal verbs

used to describe a situation influences the inference that people make about counterfactual

situations where variables are disconnected from the system.

In contrast, there were no differences between Allow and Cause trials in either the

‘near-transfer, negative’ trials (machines C → E and A → E with C = c2, A = a2), V=233,

p = .74, or the ‘far-transfer’ trials, V=439, p = .52.14

Since Study 3 is a ‘mirror’ version of Study 2, we can also think of its results in

relation to the results of Study 2. In that study, speakers were much more likely to use

Cause to describe the generative compared to the preventative node, while they were

equally likely to use Allow to describe the generative and the preventative node. A listener

that was trying to ‘invert’ an accurate model of the speakers in Study 2 would thus infer

(in the current study) that the Cause node is likely to lead to the outcome on its own,

while the Allow node may or may not do so. This pattern is similar to what listeners

inferred in the current study.

t-test, in a slight deviation from our pre-registration; using paired-sampled t-tests instead yields identical

results.

14 We pre-registered as an exploratory hypothesis that on the ‘far-transfer’ trials, participants might give

higher ratings in the Cause relative to the Allow condition. The rationale for that prediction was that

participants might have made abstract inferences on the basis of the causal judgments, classifying the

Allow node as more likely to exert ‘inhibitory’ causal power when in its negative state. Speculatively, the

fact that we find no difference in the far-transfer trials might be explained by the fact that participants did

not make these more abstract inferences, or that integrating these inferences with information about a new

node would have been too cognitively demanding.
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Discussion

Results of Study 3 suggest that listeners can use the causal language that describes

a causal relationship to make inferences about counterfactual situations in which a variable

is disconnected from the causal system. In a situation where two events jointly cause an

outcome, and the events are respectively described as Causing and Allowing the outcome,

participants made different inferences about what would happen if the corresponding

variable was disconnected from the system. Participants were more likely to predict that

the outcome would still occur if the variable corresponding to the Cause event was still

present while the variable corresponding to the Allow event was disconnected, relative to

vice-versa. Accounts of causal language based on SCMs cannot predict this result.

General Discussion

Humans are remarkable in their capacity to generalize what they learn. The

flexibility of causal cognition suggests that the mind strives to construct invariant

representations of causal mechanisms, that can easily be re-used across contexts.

With this hypothesis in mind, we can ask what representations people use when

they make a causal judgment about a particular system. Many existing theories implicitly

assume that people use a relatively impoverished representation: a Structural Causal

Model (SCM). An SCM designed to represent a particular system can discard a lot of

information about the more general causal laws that explain why the system works the way

it does. We suggest that causal judgments might instead be derived from a representation

of these more general causal laws.

This hypothesis can explain why people make an intuitive distinction between

‘productive’ and non-productive causation, a phenomenon that counterfactual theories

typically struggle to explain. We argue that causal models are simply not expressive

enough to model this distinction. Our claim is supported by a series of simple experiments,

in which we successfully influence people’s causal judgments by manipulating the

consequences of ‘variable-disconnection’ counterfactuals, a manipulation that leaves intact
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the underlying causal model representation of the situation. In this section, explore the

relationship between our account and other theories of causal representation, and discuss

outstanding questions.

Causal model theory

Sloman et al. (2009) have argued that the meaning of CAUSE, ALLOW and

PREVENT could be formalized in terms of SCMs (see also Cao et al., 2023).15 According

to their causal model theory of causal meaning, the appropriateness of a causal verb

depends on the structural equation with which people represent the corresponding causal

relationship. For example, the claim that C causes E is appropriate when the structural

equation for E is of the form:

E := C

People are predicted to judge that C allows E when the structural equation for E

takes the form:

E := C&X

Where X is another variable (or set of other variables).

The results of our experiments suggest that this theory cannot fully account for the

meaning of CAUSE and ALLOW: we were able to systematically influence the proportion

of CAUSE and ALLOW statements while leaving the relevant structural equations intact.

In the Supplementary Information, we address the possibility that participants

might have constructed more complex SCMs than we have been suggesting (for example,

incorporating variables that represent whether a node is wired). We argue that even on

this assumption, SCM-based theories do not seem to easily explain our data.

15 Technically, Sloman et al.’s theory is meant to account for the representation of generic causal claims

(e.g. Heat causes fires) instead of singular causation (e.g. the heat caused the fire). However, it could

plausibly be extended to cases of singular causation. Sloman et al. also use ENABLE where we use

ALLOW; here we abstract over this difference, based on the fact that these verbs seem to be very close in

concept space (Wolff & Song, 2003).

https://osf.io/q93kh?view_only=3c9816af19ab463f9e9390740d622d86
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Mental model theory

According to Mental Model theory, the meaning of causal expressions is determined

by particular patterns of possibilities in the reasoner’s mental model of the situation, along

with a general assumption that causes precede their effects (Goldvarg & Johnson-Laird,

2001; Khemlani et al., 2014). The expression ‘A allows E’ means for example that A is

necessary for E, i.e. that there is no possibility (in the relevant mental model) in which E

occurs in the absence of A. In contrast, ‘A causes E’ means that A is sufficient for E: E

occurs whenever A occurs. The theory also gives a definition of PREVENT, and makes

predictions about omissive causation (Khemlani et al., 2018).

In order to derive predictions from Mental Model theory in the context of our

experiments, we would need an account of how people create mental models for a given

machine; i.e. an account of what possibilities people spontaneously represent. Consider for

example the simple machine C → E. Do reasoners include different possibilities in their

mental model of the machine, depending on what would happen if we disconnected node

C? As far as we know, existing implementations of the theory are silent on these questions.

Developing such an account is a valuable direction for future research, although it is

outside the scope of the present paper.

Process theories

Intuitively, it seems that intuitions about productive causation might be explainable

in terms of the transmission of some physical quantity, like force or energy: Suzy’s throw is

a productive cause of the bottle breaking because one can trace a physical process all the

way from Suzy’s throw to the bottle breaking. Several philosophical accounts of causation

build on this insight (Dowe, 1992; Salmon, 1994).

In psychology and linguistics, the force-dynamics framework postulates that when

people think about causation, they rely on representations akin to the ones found in

Newtonian mechanics: force vectors that additively combine to affect the motion of an

entity in (physical or metaphorical) space (Talmy, 1988; Wolff, 2007; Copley & Wolff,
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2014). Force dynamics give an intuitively compelling, and empirically successful, account of

causal concepts like PREVENT, CAUSE and ALLOW (Wolff, 2007; Wolff et al., 2010;

Wolff & Barbey, 2015).

According to the theory, causal judgments are derived from vector addition on the

represented forces. Consider for example our rock-throwing example. The bottle has a

tendency to remain intact, which is mentally represented as a force (the ‘patient force’ P).

This force points in a different direction than the endstate E, i.e. the bottle being broken.

By throwing the rock, Suzy exerts an ‘affector’ force A on the bottle. By performing vector

addition on the forces exerted by A and P, people can compute the endstate E, namely

that the bottle will break. Wolff holds that people are inclined to use CAUSE to describe

situations where force A points in a different direction than the patient force P, and P

points in a different direction than E. The force dynamics treatment of ALLOW is slightly

more complicated. Wolff et al. (2010) argue that judgments of ALLOW result from a

hybrid process that combine force representations with counterfactual thinking: people

represent the Affector force as the resultant of two forces in a double prevention case (the

force exerted by the preventer, and the force exerted by the double preventer).

The force dynamics framework successfully accounts for many patterns of causal

intuitions. At the same time, it carries a strong commitment about representation, namely

that people maintain vector representations of the relevant factors at play in a scene (even

when thinking about non-physical domains), and perform vector addition to make causal

judgments.

Our framework can help explain why force dynamics theory is often a successful

account of causal judgment, while offering a way to explain the same phenomena with

much leaner representational commitments. We submit that the force theory is successful

because force representations are invariant causal representations. For example, in

Newtonian mechanics, the force that an object C exerts on another object E does not

depend on the other forces exerted on E. As such, forces compose in a predictable way, and
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we can use a force representation to compute what would happen if we removed or added

other forces from an interaction. In other words, when we represent a situation in terms of

Newtonian-like forces, it is possible to compute the consequences of variable-disconnection

counterfactuals. We submit that this is why force dynamics can account for the difference

between cases of productive and non-productive causation.

Of course, vector representations of forces are only a small subset of the set of

invariant causal representations. So, in order to model people’s causal judgments in

non-physical domains, we may not need to assume that they perform vector addition over

force-like representations, as the force dynamics framework does. Instead all we need to do

is posit that people use representations that are sufficient invariant to support

variable-disconnection counterfactuals.

The Counterfactual Simulation Model

Gerstenberg and colleagues have argued that people make causal judgments by

running counterfactual simulations over probabilistic programs: for example, they make

causal judgments about physical events by using an internal physics engine (which

approximates Newtonian dynamics; Gerstenberg et al., 2021). One key assumption of the

‘Counterfactual Simulation Model’ (CSM) is that when people make causal judgments,

they assess both ‘whether-causation’ (checking whether the outcome E would have

occurred in the absence of candidate cause C), and ‘how-causation’ (checking whether E

would have occurred in a different way if C had occurred in a different way). The

counterfactual interventions involved in assessing how-causation consist in slightly changing

the way that C happened—for example, in a physical setting it can involve slightly

modifying the velocity or trajectory of a billiard ball.

Beller and Gerstenberg (2023) have developed a theory of causal meaning that can

capture how people use causal verbs in a simple physical setting. They argue that people

are more likely to describe C as CAUSING E when the causal relationship exhibits both

how-causation and whether-causation, while they are more likely to describe C as
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ALLOWING E when the relationship exhibits only whether-causation.

Our framework can give a high-level explanation for the fruitfulness of the CSM

approach to causal language. Beller and Gerstenberg (2023) assume that people represent

physical interactions using an internal approximation of Newtonian mechanics; as we argue

in the previous section, such a representation is in principle expressive enough to support

compositional causal reasoning, and therefore to compute variable-disconnection

counterfactuals.

On the other hand, our experimental data suggest that the human mind

distinguishes between different kinds of causation even in the absence of the cues that the

CSM highlights. In our experiments, all variables had discrete values. As such there were

no-difference in ‘how-causation’ between events that participants judged as causing and

events that participants judged as allowing an outcome.

Similarly, there were no explicit mention of vector-like forces in our experiments,

which argues against a force dynamics account. Nonetheless, proponents of these

approaches (CSM or force dynamics) might argue that participants in our experiments

were spontaneously inferring the presence of forces, or that they represented the binary

states of the nodes in a continuous format. For example, participants might have conceived

of the nodes as transmitting an electrical force to their children, and might have based

their judgments on this force representation. Therefore, more empirical research is needed

to fully arbitrate between our approach and these other theories.

Other counterfactual approaches

Counterfactual theorists could argue that the distinction between productive and

non-productive causation arises from a quantitative difference in the strength of our causal

intuitions, instead of being a qualitative distinction. Human causal judgments are typically

graded (Morris et al., 2019; O’Neill et al., 2022), so people might simply view Suzy as

‘more of a cause’ of the bottle breaking than Billy. Supporting this view, philosopher Paul

Henne and his collaborators have shown that computational models designed to explain
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gradation in causal judgment (Icard et al., 2017; Quillien, 2020) can account for many

intuitions about productive causation (Henne et al., 2017, 2019; Henne & O’Neill, 2022;

O’Neill et al., 2022). In a double prevention case, for example, the productive cause is

typically the variable that covaries most highly with the outcome, across possible

counterfactual states of the system (O’Neill et al., 2022).

We are sympathetic to this perspective, but we believe it can only explain some of

the relevant data. Notably, experimental manipulations that have an influence on graded

causal intuitions often leave production intuitions unaffected. In a recent study, Thanawala

and Erb (2024) manipulated whether the agents in a double prevention case acted

intentionally. In the situation where only the double-preventer acted intentionally,

participants gave higher causal ratings to the double-preventer (e.g. Danielle preventing

Billy from catching the rock) than the producer (e.g. Suzy throwing the rock), when asked

whether the outcome happened because of that agent. Yet in the same situation

participants still described the double-preventer as Allowing the outcome, while they

described the producer as Causing the outcome. Similarly, it is difficult to get participants

to agree that the double-preventer broke the bottle, even when they strongly agree that the

bottle broke because of the double-preventer (Rose et al., 2021).

Other counterfactual theorists suggest that SCMs might account for people’s causal

judgments if we also assume that people hold that variables have ‘default’ and ‘deviant’

values (Maudlin, 2004; Menzies, 2004; Hall, 2007; Hitchcock, 2007; Gallow, 2021, but see

Wysocki, 2023). The default value of a variable is (roughly) the value it has when nothing

else is acting on it (Hall, 2007). With this additional representational baggage, SCM-based

theories can give reasonable accounts of actual causation, and of the distinction between

productive and non-productive causation (see especially Hitchcock, 2007).

While this work is insightful, theorists have added the default/deviant distinction to

the SCM framework in a relatively post-hoc way. In our framework, the idea that variables

have something like a default value emerges naturally, as a byproduct of compositional
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causal reasoning. If a reasoner has an invariant representation of the causal laws that

determine the value of a variable, this representation will usually specify what happens in

cases where no other variable is exerting a causal influence on it (otherwise, the

representation would not be sufficiently general). One can view that particular value as the

‘default value’ of a variable.

As such, we submit that our framework sheds light on why the default/deviant

distinction has been useful in past causal modeling work: information about default values

indirectly encodes some information about the invariant causal laws that govern the system.

Heterogeneity in participants’ judgments

Our empirical data shows a lot of variation in people’s judgments: within the same

condition participants can be split almost equally between two or three different options.

Participants may think that in some situations several words apply, for example that it is

adequate to both say that an event C caused and allowed an event E to happen. As

evidence for this conjecture, in studies where participants give a separate rating for each

causal expression, there are situations where most participants select both Cause and

Allow to describe a causal relationship (Cao et al., 2023).

We assume that people have a tendency to use Cause (relative to Allow) more

frequently to describe productive causes, but this tendency appears to be a soft preference.

In particular, in Study 1 Cause was the modal answer in all conditions, although its

relative prevalence compared to other options changed in the direction predicted by our

theory. We speculate that the relatively abstract nature of our stimuli contributed to this

tendency. In order to test our theory in a controlled setting, we used manipulations that

are quite minimal compared to most experiments on causal meaning. Participants who did

not have vivid intuitions might have seen the word Cause as the ‘safe’ option, since it is

arguably the most generic term, across the options we offered, that conveys the fact that

an event exerts some causal influence on the outcome.
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Toward a formal account of productive causation

We claim that our formal notion of variable-disconnection can help make sense of

the intuitive distinction between productive and non-productive causes, and we have

sketched a formal theory of productive causation along these lines. Much work remains to

be done to refine the theory, and empirically test its more fine-grained predictions.

In doing so, it will be important to incorporate the role of time. Following much of

the tradition in causal modeling, here we deliberately ignored temporal dynamics. This is

an over-simplification, and there are reasons to think that intuitions about productive

causation depend on how events unfold in time. As such, a complete formal account of

these intuitions would need to incorporate a formal representation of time (see e.g.

Nadathur & Lauer, 2020).

For example, Skow (2023) points out that temporal dynamics matter to the way

people interpret cases of double prevention. Consider a case where striking down a pillar

makes the roof fall down, by preventing the pillar from preventing the fall. It seems that

striking down the pillar caused the roof to fall down (instead of merely allowing it;

Schaffer, 2000). Skow suggests that we view double-preventers as productive causes when

the preventer was already preventing the outcome before the double preventer intervened.

A complete theory of productive causation would ideally explain why.

Conclusion

In causal cognition research, a lot of progress has been made by thinking carefully

about the format of the representations that support causal thought. In this spirit, we

suggest that structural causal models are not a sufficiently expressive representation to

support the full wealth of causal judgments that people make. In turn, this argument

suggests that one particular implementation of the counterfactual theory of causation has

limitations when it comes to modeling causal judgment.

Ultimately, however, our work supports the counterfactual approach to causation,

and the associated framework of interventionism (Pearl, 2000; Woodward, 2003). Our
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point is that the limitations of structural causal models do not necessarily mean that

counterfactuals are inadequate for modeling causal judgment. Our proposed approach to

causal judgment fully embraces the notion that people make counterfactual interventions

on their internal representation of the world: we simply suggest that these representations

aim to capture invariant causal relationships, instead of the idiosyncratic details of one

particular causal system.
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