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Abstract

People often make judgments about uncertain facts and events, for example ‘Germany will

win the world cup’. Judgment under uncertainty is often studied with reference to a

normative ideal according to which people should make guesses that have a high

probability of being correct. According to this normative ideal, you should say that

Germany will win the world cup if you think that Germany is in fact likely to win. We

argue that in many cases, judgment under uncertainty is instead best conceived of as an

act of lossy compression, where the goal is to efficiently encode a probability distribution,

rather than express the probability of a single outcome. We test formal computational

models derived from our theory, showing in four experiments that they accurately predict

how people make and interpret guesses. Our account naturally explains why people dislike

vacuously-correct guesses (like ‘Some country will win the world cup’), and sheds light on

apparently sub-optimal patterns of judgment such as the conjunction fallacy.

Keywords: computational modeling; probability; judgment under uncertainty; social

cognition; information theory
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Lossy encoding of distributions in judgment under uncertainty

Introduction

People often make judgments about uncertain facts and events. These judgments

are often compared to a normative ideal derived from probability theory. For example,

researchers explore how people’s judgments conform to the standards of probability theory

(Griffiths & Tenenbaum, 2006), and how they deviate from these standards (Kahneman

et al., 1982). The challenge to explain the successes and failures of human probabilistic

reasoning has given rise to a large body of productive research (e.g. Griffiths &

Tenenbaum, 2006; Tversky & Kahneman, 1983; Johnson-Laird et al., 2015; Zhu et al.,

2020; Krynski & Tenenbaum, 2007; Fox & Rottenstreich, 2003; Dasgupta et al., 2020;

Gigerenzer, 1991; Cosmides & Tooby, 1996; Quillien et al., 2023; Busemeyer et al., 2011;

Oaksford & Chater, 2007; Juslin et al., 2007; Koralus & Mascarenhas, 2013). This

comparison to a normative standard is in line with the more general idea in cognitive

science that it is useful to think about the abstract structure of the information-processing

problems the mind is solving (Marr, 1982; Anderson, 1990; Cosmides & Tooby, 1994).

Work on judgment under uncertainty typically uses as a normative standard that

we will call the Probability-maximizing criterion: you should endorse a statement in

proportion to the probability that the statement is correct. Under Probability-maximizing,

you should endorse ‘Germany will win the world cup’ if you think that Germany is likely to

win the world cup. Consider for example the research on ‘conjunction errors’ (Tversky &

Kahneman, 1983). According to Probability-maximizing, it is a mistake to endorse the

statement ‘Linda is a bank teller and is active in the feminist movement’ to a greater

extent than ‘Linda is a bank teller’, because the former statement cannot have higher

probability of being true.

In this paper, we suggest that there is another, complementary normative standard

against which judgment under uncertainty can be evaluated. According to this standard, a

statement about an uncertain fact or outcome (a ‘guess’) conveys information about a
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probability distribution, rather than the probability of a single outcome. In a sense that we

will make precise later, a guess consists in a compressed encoding of a distribution.

The two different standards (Probability-maximizing and Distribution-encoding) are

complementary in the sense that each specifies a different information-processing problem

that the mind is faced with. Probability-maximizing is the right standard in cases like

betting: when someone asks you which horse you would like to bet on, then all else being

equal you should nominate the horse you think is more likely to win. Distribution-encoding

is appropriate in cases where you need to efficiently encode the contents of your

probabilistic beliefs; for example when you need to communicate about more than the

probability of a single outcome.

It is helpful to make an analogy with the way scientists use probability. Sometimes

scientists are looking to compute a particular probability, for example when they compute

a p-value, or their statistical power to detect an effect. Other times they are trying to

compute a summary of a distribution. For example when a researcher reports the mean

and standard deviation of a measured variable, she is reporting a summary that captures

some (incomplete) information about the empirical distribution of that variable. Or, when

she computes the correlation between two variables, she is reporting a partial summary of

the joint distribution over these variables. Clearly, both types of practice (computing a

particular probability, and computing summaries of a distribution) are essential to the way

scientists process information. By analogy, it makes sense that each should also play a role

in our cognitive lives.

Scope of the work

We do not aim to provide an account of all phenomena in probabilistic reasoning. In

many psychological tasks, people’s judgments are already well-captured by assuming that

people are approximately solving the Probability-maximizing problem, perhaps subject to

noise, cognitive limitations, or sub-optimal processing (Griffiths & Tenenbaum, 2006; Zhu

et al., 2020; Costello & Watts, 2014, 2018; Beck et al., 2012). We are interested in a
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different set of cases, where we think that people face the Distribution-encoding problem.

A paradigmatic example would be replying to your friend who just asked who you think

will win the next world cup. Arguably the problem your mind is facing in that situation is

that of giving your friend an idea of your subjective probability distribution over the

possible winners.

Figure 1

Difference between the probability-maximizing standard (left) and our view

(right). Under the probability-maximizing standard, the guess ‘Germany will win’ only

encodes information about the probability that Germany will win. Under our account, it

encodes information about the whole probability distribution.

In such cases, Distribution-encoding makes sense of many intuitive judgments that

are difficult to account for with Probability-maximizing. Suppose that your beliefs about

who will win the next world cup are as in Figure 1: you think that Germany, France, Brazil

and Italy have 45%, 40%, 10% and 5% probabilities of winning, respectively. It seems that

‘Germany or Italy will win’ is somehow a worse guess than ‘Germany will win’. Under the

Probability-maximizing standard, this intuition is a mistake, since

Pr(Germany ∨ Italy) > Pr(Germany). More generally, the Probability-maximizing

standard runs into the problem that it seems to entail Vacuous-guessing: the thesis that we
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should strive to always prefer statements with probability 1, like ‘any country might win

the world cup’ (Yaniv & Foster, 1995; Holguin, 2022).

Distribution-encoding explains the intuitive lack of appeal of Vacuous guessing. If a

guess functions as an attempt to efficiently summarize your distribution over possible

outcomes, then vacuous guesses will typically be bad. ‘Any country might win’

misleadingly implies that you think every country has about the same chance of winning.

Similarly, ‘Germany or Italy will win’ misleadingly implies that you think Italy has better

chances than France.

In sum, our main goal is to account for people’s judgments in situations where

Distribution-encoding is plausibly the appropriate normative standard. However, we

suggest that our perspective may also make sense of some of the mistakes—like conjunction

errors—that people make in tasks where they are asked about the probability of a single

outcome. Researchers sometimes explain these mistakes by arguing that participants are

replacing the question they are being asked with a different question (Kahneman &

Frederick, 2002). In this spirit, we suggest that mistakes in probabilistic reasoning may

often arise because people respond as if they were solving the Distribution-encoding

problem even in tasks where they are explicitly asked for Probability-maximizing.

For example, guessing that Linda is ‘a bank-teller involved in the feminist

movement’ can better convey your subjective distribution over Linda’s likely features

(depending on what you know about her) than guessing she is ‘a bank teller’. We develop

this argument in more detail in the General Discussion (see also Dorst & Mandelkern,

2021). There we also argue that Distribution-encoding is consistent with the related

Disjunction fallacy (Bar-Hillel & Neter, 1993), with over-confidence in interval estimation

(Juslin et al., 1999), and with people’s intuitive conception of surprise and likelihood

(Teigen et al., 2022; Teigen & Keren, 2003).
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Relation to other perspectives

Our thesis is that Distribution-encoding can capture many facts about human

probabilistic reasoning from an abstract, computational-level perspective (Marr, 1982;

Anderson, 1990; Cosmides & Tooby, 1994). This view is compatible with other

perspectives. In particular, the intuition that people avoid making misleading or

uninformative guesses can be expressed in terms of concepts from linguistics, in particular

in terms of pragmatics. People might avoid making vacuous guesses in order to conform to

Gricean maxims of conversation, or to maximize relevance (Grice, 1975; Sperber & Wilson,

1986). A similar argument can be formulated in terms of rational speech acts, where the

speaker optimizes the inference that the listener will derive from an utterance (Goodman &

Frank, 2016; Shafto et al., 2014; Degen, 2023). A related idea is that people care about a

statement’s specificity, preferring to endorse guesses that mention a relatively small subset

of the possible outcomes, because specificity is a useful proxy for informativeness. Under

this proposal, judgment under uncertainty is governed by a trade-off between

probability-maximizing and specificity (Yaniv & Foster, 1995; Dorst & Mandelkern, 2021).

We suggest that Distribution-encoding extracts, at an abstract level, the underlying

logic that makes these proposals work. Consider for example the proposal that people favor

specific guesses because they are a useful proxy for informativeness (Yaniv & Foster, 1995;

Dorst & Mandelkern, 2021). We think that this intuition can be naturally explained in

information-theoretic terms: more specific guesses typically provide better summaries of

the relevant probability distribution.

In what follows we formally define our proposal, and report the results of

experimental studies testing its fit to people’s intuitions. A terminological note: we use the

word ‘guess’ as a shortcut for ‘statement about an uncertain fact or event’, following its use

in previous literature (Holguin, 2022; Dorst & Mandelkern, 2021). Our use of the term

differs somewhat from everyday usage: for example, some statements count as ‘guesses’

under our use even if the speaker has very high confidence in them.
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Efficient summaries of probability distributions

People often represent a subjective probability distribution over a set of relevant

possible outcomes, or possible states of affairs.1 You might for example think that among

the possible answers to the question ‘how many member states are in the European

Union?’, some possible answers (like 25) are more likely than others (2, or 60), even if you

may not be able to explicitly verbalize your probability estimates.2 This idea has been

successful in many areas of cognition, from perception to high-level cognition and

semantics (Griffiths & Tenenbaum, 2006; Oaksford & Chater, 2007; Knill & Richards,

1996; Vul & Pashler, 2008; Tenenbaum et al., 2011; Fleming et al., 2012; Lassiter, 2011).

Creating efficient summaries of a probability distribution is probably an important

information-processing problem for the mind. For example, someone might ask you how

many states you think are in the European Union, and you have to craft a verbal summary

of your subjective distribution over possible answers, like ‘between 20 and 30’. Or, you

might want to remember your subjective distribution while minimizing the cost of storing

this information in memory.

On this view, a guess can function as a lossy compression of an underlying

probability distribution. We can make this proposal precise by using ideas from information

1 In line with Bayesian analyses of probability, a speaker’s subjective probability distribution represents the

degree of credence the speaker assigns to various possible outcomes or states of affairs (Jaynes, 2003).

Subjective distributions can be shaped by statistical frequency, as when we reason that team A and B are

equally likely to win a football game because each team has won 10 of their previous 20 encounters.

Subjective distributions can also be shaped by many other factors, such as prior knowledge or causal

reasoning; we may for instance adjust our probability estimate that team A will win the game if we learn

that the best player in team B was injured.

2 We are not committed to the idea that people always explicitly represent probability distributions, or

that they do so in a perfectly coherent way. In many cases people may represent probabilities only in an

implicit format, for instance within a generative model from which they draw samples (Chater & Oaksford,

2013; Vul et al., 2014; Icard, 2016). In these cases our proposal is that speakers make guesses that aim to

communicate the probability distribution latent in the generative model.
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theory (MacKay, 2003; Gagie, 2006; Sims, 2016). One can think of lossy compression as a

process where an input (in our case, an agent’s subjective probability distribution over

relevant possible outcomes) is encoded in a compressed form, which can then be read by a

decoder (see Figure 2). The faithfulness of the encoding can be quantified as the extent to

which the decoded output diverges from the original input (Sims, 2016; Berger, 2003).

Figure 2

Abstract characterization of our framework. The agent has a subjective probability

distribution (left) over possible answers to a question (top left). The guess (middle)

provides a compressed encoding, which can later be decoded to yield an approximate

re-construction of the original distribution (right). For a model of how people interpret

interval estimates in particular, see Study 4.

Formally, we consider a reasoner that has a distribution P over some outcome of

interest, and needs to create a summary representation g as a compressed version of this

distribution. We assume the existence of an optimal decoder that can decode the

representation g to re-construct a distribution Qg. The encoding scheme should minimize

the extent to which Qg diverges from P , subject to various constraints. We can define the

faithfulness of Qg as an approximate reconstruction of P by using a measure D of the

‘divergence’ between distributions Qg and P . In our analyses we will use the



GUESSING AS COMPRESSION 10

Kullback-Leibler divergence of Qg from P (Gagie, 2006; Kullback & Leibler, 1951)3:

DKL(P ||Qg) =
∫

i
P (i) log

(
P (i)
Qg(i)

)
(1)

The KL-divergence is widely used as a measure of the faithfulness of a decoded

probability distribution (Gagie, 2006; Tishby et al., 2000). Note however that the measure

is not well-behaved in some contexts where Qg(i) = 0; in these contexts one could use more

robust divergence measures.4

The value of the representation g (the ‘guess’) is inversely related to the divergence

of Qg from P . Of course, in the absence of constraints the best g is trivially just an

identical copy of P (which yields DKL(P ||Qg) = 0). There might however be constraints

that force the reasoner to create a more coarse-grained representation. These constraints

could in principle be formalized as a bound on the quantity of information that the

reasoner can extract from P when creating g, following work in rate-distortion theory and

related methods (Sims, 2016; Berger, 2003; Tishby et al., 2000). In the present work, we

found that it was easier to make experimental predictions if we instead consider constraints

on the possible guesses that the reasoner can make. That is, we assume that the reasoner

has access to a menu G of possible representations, and has to choose the representation

g ∈ G that minimizes the divergence between Qg and P . Formally, the reasoner is looking

3 One intuition for the use of the Kullback-Leibler divergence is the following. The log
(

P (i)
Qg(i)

)
term

measures the difference in the surprise (technically, the ‘surprisal’) experienced by an agent using P and

and agent using Qg, when observing outcome i. The agent with access to P would like to minimize the

expected value of this difference; he thinks that outcome i will occur with probability P (i), and therefore

wants to minimize
∫

i
P (i) log

(
P (i)

Qg(i)

)
. See for example Egré et al. (2023).

4 We thank an anonymous reviewer for highlighting this point. In exploratory analyses we have verified

that our model yields almost identical predictions when using one such measure, the Jensen-Shannon

divergence. The Jensen-Shannon divergence is computed by first defining a ‘mixture’ distribution

M = (P + Qg)/2, and then computing the average of the KL divergences of M from P and from Qg.
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for the representation g⋆ such that:

g⋆ = arg min
g∈G

DKL(P ||Qg) (2)

In principle this framework is very general and can be applied in several different

domains. Guessing might for example be an intra-personal process meant to compress

information in memory, where the decoding stage corresponds to later memory retrieval

(see e.g. Gershman, 2021). For concreteness in this paper we will often use as an example

the case of verbal communication. In that context a speaker utters a guess g with the

intent to get a listener to re-construct a good estimate Qg of the speaker’s probability

distribution P . Although ideally the speaker would simply enumerate his full subjective

distribution, several constraints prevent him from doing so, like limited time, computation

or conceptual knowledge.

In the context of verbal communication, our framework implies some relatively

strong, idealized assumptions. First, the speaker knows the inference Qg that the listener

will draw. Second, the listener’s inference is approximately optimal. Third, the speaker

and listener have a common understanding of the set of relevant possibilities over which

the distribution is defined. There is of course a lot that could be say about the mechanisms

that make these assumptions approximately appropriate (e.g. conventions, pragmatic

inferences) and about when they might fail. Our purpose however is to use communication

as an example illustrating our more abstract framework, not to provide a complete account

of verbal communication of probabilistic beliefs (see also General Discussion). Our

idealized assumptions may not always hold exactly, but we submit they are often close

enough to help us capture key phenomena in judgment under uncertainty. The next section

illustrates our account in a simple setting.

Case study: disjunctive guesses

Consider the box in Figure 3, containing balls of different colors. If someone

randomly draws a ball from the box, which color will it be? We study the case where the
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speaker is only allowed to make disjunctive guesses, for example ‘Red’, ‘Blue or Green’,

‘Yellow or Red or Green’, etc. His goal is to communicate his subjective distribution over

the outcome of the draw (i.e. for each color, what is the probability that the ball drawn

from the urn will be of that color?) to a listener. The listener knows that the box contains

red, yellow, blue and green balls, but cannot see inside the box and so does not know the

exact proportions of each color.

Figure 3

a: Someone will randomly draw a ball from the box; the speaker must guess which color will

come out. b: The speaker communicates his subjective probability distribution over the

outcome of the draw (left) by making a guess (middle). The listener infers a probability

distribution from the guess (right).

If you tell someone that the ball will be “red, green, or yellow”, what can they infer?

Remember that our general framework is not committed to a particular model of how the

listener infers the probability distribution Qg, but in the current setting we can obtain a

relatively simple model of that inference. Specifically, the listener can infer that red,
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yellow, and green are more probable outcomes than blue, but she has no reason to think

that any of the three colors (red, yellow, green) is more likely than the others. So, her best

bet is to construct a probability distribution that looks like the one in Figure 3b (right).

As another example, if you tell her “it will be a red ball”, her best bet is to infer a

probability distribution over outcomes that looks like the one in Figure 4b. More generally,

the principle of indifference (Jaynes, 2003; Laplace, 1820) implies that listeners should infer

that outcomes mentioned in the guess have equal probability, and have higher probability

than outcomes not mentioned in the guess (see the methods section of Study 1 for details).5

The speaker makes a guess g that he expects will result in a low divergence between

the distribution Qg inferred by the listener and his own distribution P . For example, the

guess ‘Red, Green or Yellow’ is a good candidate guess because the distribution over

possible outcomes inferred by the listener (Figure 3, right) does not diverge too much from

the speaker’s distribution (Figure 3, left).

Our account delivers the intuitive result that the vacuous guess ‘Red, Green, Yellow

or Blue’ is not necessarily the best, despite having probability 1. Including all possible

outcomes in the guess would cause the listener to infer a flat distribution, which might be

quite unlike the speaker’s subjective distribution. We can also explain the intuition that

good guesses respect ‘clustering’, in the the sense that when two outcomes A and B have a

5 Here we are modeling how the listener constructs her probability distribution over possible outcomes of

the random draw from the urn. That is, the listener assigns some probability to the random draw yielding

a red ball, to the random draw yielding a blue ball, etc. Note that the listener might also have a

probability distribution over the contents of the urn. That is, the listener might assign some probability to

the possibility that the contents of the urn are [9 red balls, 1 green ball, 1 yellow ball, 1 blue ball], some

probability to the possibility that the contents are [8 red balls, 2 green balls, 1 yellow ball, 1 blue ball], etc.

The relationship between these two distributions is that if the listener is coherent, she should be able to

derive the first probability distribution (over possible outcomes of the draw) from the second probability

distribution (over possible contents of the urn), by marginalization. We explore this marginalization as a

(slightly more complex) model of the listener’s inference in the context of the RSA model we present in the

Appendix.
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Figure 4

a: Speaker’s subjective probability distribution over possible outcomes. b, c, d:

distributions over possible outcomes consistent with hearing the guesses “it will be a red

ball”, “it will be a red, yellow or green ball”, “it won’t be a red ball’.

similar probability, they should either be both included in the guess or both left out (Dorst

& Mandelkern, 2021). If an urn has 4 red, 4 green, 2 yellow and 2 blue balls, for example,

it seems strange to guess that the ball will be ‘Red, Green or Yellow’. Guesses that include

outcome A but not outcome B imply a distribution where A is much more likely than B,

and this distribution is a bad approximation of the speaker’s distribution if the speaker

takes A and B to be equally likely.

We can also account for the fact that whether a guess is good seems to be relative

to the question at hand. Consider again the urn in Figure 3a, with 5 red balls out of 12. If

someone asks ‘which color will come out?’, ‘red’ seems a good guess. But if someone asks

‘will the ball be red or non-red?’, ‘non-red’ seems better. The question ‘red or non-red?’
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implies that the relevant probability distribution has support {Red, ¬Red}, such that the

guess ‘red’ would misleadingly imply that Pr(Red) > Pr(¬Red). In some contexts the

question under discussion may be implicit; we do not directly address how people infer it

from the context, but we note that existing work in linguistics explores the issue (e.g.

Roberts, 2012).

Note that the model of the listener’s inference we gave in this section is specific to

the example of our balls-and-urns setting. In general, the inference drawn by a listener will

depend on the specifics of the task. Consider for example a task where you see a shape

briefly displayed on a screen, and you have to guess which shape it was, by picking shapes

from an array like the one in Figure 5. Here the different shapes vary along a similarity

gradient (color and size), so a listener hearing your guess should infer a probability

distribution where the probability that a shape appeared on the screen is a function of its

similarity to the shapes selected by the guesser.

Figure 5

Shapes varying along a similarity gradient.

Accuracy and specificity

Earlier we mentioned a theory according to which people like guesses that balance a

trade-off between accuracy and specificity. According to this account, a good guess is likely

to be correct but does not mention too many outcomes (Yaniv & Foster, 1995; Dorst &
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Mandelkern, 2021; Goldsmith et al., 2002; Skipper, 2023)6. The experiments we report

below also give us the opportunity to test the predictions of this theory.

As we said earlier, the trade-off hypothesis is in principle consistent with our own

hypothesis. One can interpret the trade-off model as a more descriptive, process-level

theory than our own computational-level analysis. Under this interpretation, the two

accounts sit at different levels of analysis and so are not in competition with each other. It

might for example be that guesses function to encode a speaker’s subjective probability

distribution, but that people make guesses that are both likely and specific because this is

a good enough heuristic to fulfill that function.

In general, the trade-off hypothesis makes very similar experimental predictions as

our account, and therefore our experiments are not primarily designed to arbitrate between

the two accounts. We wish however to highlight one interesting way that their predictions

diverge. Consider the urn in Figure 3 (with 5 red, 3 green, 3 yellow and 1 blue balls).

When asked what color will come out, it might seem natural to say ‘Red’, and maybe also

to say ‘Red, Green or Yellow’. The guess ‘Red or Green’ might seem less natural. This

pattern of intuition can be described as a U-shape in the relationship between the size of a

guess (how many possible outcomes it mentions) and its quality: there is a guess of size 2

that seems less natural than both a size-1 and a size-3 guess.

It is of course an empirical question whether people’s judgments actually display

this sort of pattern. But before looking at the data, it is interesting to ask whether a given

account predicts that such a U-shaped pattern is possible. In the Appendix we prove that

the trade-off model by Dorst and Mandelkern (2021) predicts that people’s judgments will

never (except for noisy responding) exhibit such a U-shaped relationship between guess size

and guess quality. Intuitively, a trade-off analysis of guess quality holds that, if someone

6 Some authors (Yaniv & Foster, 1995; Dorst & Mandelkern, 2021) use the term ‘informative’. We use

‘specific’ following Skipper (2023), who points out that it is a more neutral and less theoretically loaded

word.
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prefers to say ‘Red’ instead of ‘Red or Green’, this means that they place a high weight on

specificity relative to accuracy. Since the guess ‘Red, Green or Yellow’ is even less specific

than ‘Red or Green’, the speaker is bound to prefer ‘Red or Green’ to ‘Red, Green or

Yellow’. In other words if someone prefers a size-1 guess to a size-2 guess then they will

necessarily prefer the size-2 guess to a size-3 guess. By contrast, our information-theoretic

account predicts that U-shaped patterns will be relatively common. Intuitively, the guess

‘Red or Green’ has the misleading implication that Green balls are more frequent than

Yellow balls—so the speaker might convey a more accurate depiction of his subjective

probability distribution by saying either ‘Red’ or ‘Red, Green or Yellow’ instead.

Overview of empirical tests

In what follows we report four experiments that test the quantitative predictions of

computational models that implement our theory. Our tasks typically have no right or

wrong answers; we ask participants to make guesses about an uncertain fact or outcome, or

to judge the quality of possible guesses one could make, for example.

Studies 1 to 3 use the paradigm described above (disjunctive guesses about ball

colors); in Study 1 participants rate the quality of different guesses one could make, in

Study 2 participants compose their own guesses, and in Study 3 participants infer the

contents of an urn on the basis of someone else’s guess. In Study 4, we study how people

evaluate the quality of a guess about a continuous quantity, when they know the correct

answer. Data and R code (for modeling and data analysis) are available for all studies on

the Open Science Framework at

https://osf.io/wz649/?view_only=8d7019ee2b8d456d8c3c9b29049b75aa.

Study 1

In two studies (1a and 1b), we test our account in the context (described above) of

disjunctive guesses in a simple urn scenario. Participants were shown urns containing balls

of different colors (as in Figure 3a), whose content we systematically varied in a

within-subject design. We asked participants to rate the quality of different guesses that

https://osf.io/wz649/?view_only=8d7019ee2b8d456d8c3c9b29049b75aa
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one could make about the outcome of a random draw from the urn. We compared their

ratings with the predictions of our information-theoretic model (henceforth, compression

model), the accuracy / specificity trade-off model, and a simple probability-maximizing

model.

Materials and Measures

Participants saw urns containing 12 balls of different colors (Red, Yellow, Blue,

Green; there was at least one ball of each color in each urn). For each urn, we asked

participants to rate the quality of four guesses about the outcome of a random draw from

the urn, on a Likert scale from 1 (bad guess) to 9 (good guess). The guesses were of the

form “The player will draw {·}”, where {·} was a disjunction of possible colors (e.g. “a red

ball or a yellow ball”). We call the number of colors in {·} the size of a guess. For example,

{Red or Yellow} is a guess of size 2.

We constructed four guesses, of sizes 1, 2, 3 and 4, per urn, by first building a guess

with the most frequent color, then a guess with the two most frequent colors, etc. For

example, for the urn shown in figure 3a, we constructed the guesses {Red}, {Red or

Yellow}, {Red, Yellow or Green} and {Red, Yellow, Green or Blue} (In cases where some

colors have equal frequency we randomly imposed an artificial ordering on them when

constructing guesses). All guesses for a given urn were presented alongside the urn on a

single page, and the order of presentation of the guesses on the page was randomized.

Different urns were presented on different pages, and the order of presentation of urns was

randomized. No feedback was given.

We define the ‘profile’ of an urn as a list of four numbers, specifying the number of

balls of the most frequent color, the number of balls of the second most frequent color, and

so on. For example, the urn in Figure 3a has profile [5,3,3,1]. We used 13 different profiles

in Study 1a, and 10 in Study 1b. All participants saw one urn for each profile. The content

of the urns was procedurally generated for each participant, by first randomly sampling one

profile (without replacement), then randomly sampling a frequency ordering over colors,
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and randomizing the position of the balls in the urn.

Procedure

Participants were recruited on Prolific and completed the experiment on a

web-based interface. We first asked participants to familiarize themselves with the setting

by randomly drawing a few times from two different urns. Then they read a short set of

instructions explaining the task. In the main phase of the study, participants rated the

quality of four guesses per urn—each page featured a picture of a different urn, alongside

four different guesses to rate. Participants then completed a short set of questions probing

whether they understand how probability works in the current context (we do not analyze

these reports here). Finally, they completed a few demographic questions and were

redirected to Prolific for payment.

Studies 1a and 1b had essentially identical designs, with the following exceptions.

Study 1b was shorter, with 10 instead of 13 different urns per participant. For exploratory

purposes, we also varied whether the instructions framed the task as explicitly involving

communication. In Study 1a we simply told participants that they were about to rate

different possible guesses, while in Study 1b we asked them to imagine that they would be

communicating with a friend who cannot see the contents of the box (but knows that boxes

contain red, blue, green and yellow balls, in unknown proportion). Likert scales were

labelled with ‘bad guess’ and ‘good guess’ in Study 1a, and ‘bad answer’ and ‘good answer’

in Study 1b. Interested readers can walk through the experiments at [Omitted for blind

review].

Participants

We recruited US residents from Prolific (in Study 1a, N=38, 24 female, 13 male, 1

other, mean age = 30.8, SD = 9.5; in Study 1b, N=39, 24 female, 14 male, 1 other, mean

age = 30.7, SD = 9.4) from Prolific. Participants were compensated £1 for their

participation (median completion time was about 8 minutes) and participation was

restricted to Prolific users with a 90+% approval rate.
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Computational modeling

Compression model

We defined our general framework for the compression model in the introduction.

Here we specify the decoding function in the current setting. According to the principle of

indifference (Jaynes, 2003; Laplace, 1820), an agent should assign the same probability to

two outcomes if there is no reason to see one of them as more likely.7 As such, the decoder

infers that outcomes mentioned in the guess are more likely than un-mentioned outcomes,

but makes no distinctions otherwise. So, the decoder infers that mentioned outcomes are γ

times as likely as un-mentioned outcomes, where γ > 1 is a free parameter.8 The guess

‘Red or Green’, for example, implies that Red and Green are each γ times as likely as Blue

and Yellow.

Denote the probability of an outcome not mentioned in the guess as p. Then the

probability of an outcome mentioned in the guess is γp. It follows that the decoder infers

the following distribution Qg:

Qg(i) =


1

n¬g + γng
if g(i) = 0

γ
n¬g + γng

if g(i) = 1
(3)

where g(i) denotes whether outcome i is mentioned in the guess, ng is the number of

outcomes mentioned in the guess, and n¬g is the number of outcomes not mentioned in the

guess (see Appendix for proof). For example, for γ = 4, the guess ‘Red or Green’ translates

to Qg(Red) = Qg(Green) = .4, and Qg(Blue) = Qg(Yellow) = .1.

7 In principle the decoder might take into account the order in which colors are mentioned. We leave this

possibility aside to keep the model simple.

8 We assume that the decoder has access to basic information about the setup, i.e., that there are 12 balls

in the box, that they can be red, yellow, green and blue, but does not know in which proportions these

colors are represented. For simplicity, we consider settings where the decoder knows what combinations of

colors are possible, but our approach is in principle compatible with situations where that is not the case.
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We also allow for the original probability distribution P to deviate from the

normative distribution, for example because of perceptual or representational noise.

Formally, we assume that the distribution P ′ from which the guess is constructed might be

more spread out or more concentrated than the normative probability distribution P . We

construct P ′ by applying the following transformation to each element i of P :

P ′(i) = P (i)α

Z
(4)

where Z is a normalizing constant ensuring that all elements in P ′ sum to 1, and α is a free

parameter which controls to what extent the distribution gets concentrated or spread out.

For values of α < 1, the probability distribution gets spread out; for α > 1, it gets

concentrated (areas with a lot of probability mass get even more probability mass to the

detriment of other areas). Low values of α result in guesses that mention more possible

outcomes.

We can then compute the value of a guess as inversely related to the KL divergence

of Qg from P ′ (we add 1 to the denominator to keep the measure between 0 and 1):

V (g) = 1
1 + DKL(P ′||Qg) (5)

Accuracy-specificity trade-off model

To implement the accuracy-specificity model, we used the equation provided in

Dorst and Mandelkern (2021), where the value of a guess is:

V (g) = P ′(g)JS(g) (6)

where P ′(g) is the accuracy of a guess, i.e., the probability that the guess is correct,

S(g) = n¬g/(n¬g + ng) is its specificity: the proportion of possible outcomes (here, of

possible colors) that it does not include. J ≥ 1 is a free parameter that regulates how

sensitive people are to specificity relative to accuracy (for J = 1 the speaker only cares
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about accuracy; higher values of J correspond to a higher weight for specificity).9

Finally, we also consider a naive model that simply computes the value of a guess as

its probability. As for the compression model, when computing predictions for the trade-off

and the probability-maximizing models we allow for the possibility that speakers use a

slightly distorted distribution P ′, modulated by a free parameter α.10

Model evaluation

We fit each model both at the individual- and at the group level, by finding the

parameter values that maximize the log-likelihood of the data under the model. We

compute model fit using the AIC, a measure of model fit that penalizes overly complex

models. For robustness we also perform additional individual-level model comparisons by

computing Bayes Factors derived from marginal likelihoods.11

To compute the likelihood, we assumed that each human rating is drawn from a

truncated-discretized normal distribution with standard deviation σ and mean 1 + 8ms,

9 Dorst and Mandelkern (2021) also suggest that people might use a different value of J across different

questions. Briefly, their idea is that people might prefer to use a value of J that maximizes

‘distinctiveness’, i.e. the ratio between the value of the best guess and the value of the second best guess

for the question at hand. In exploratory analyses, we implemented a variant of the model incorporating

this idea (following footnote 22 in the original paper), but found that it did not improve model

fit—optimizing distinctiveness tends to result in high values of J , predicting that people will have a strong

preference for succinct guesses (R code for this analysis is available on our OSF page). Therefore in all the

analyses we report here we simply assume that a participant uses the same value of J across urns.

10 While the α parameter was not present in Dorst & Mandelkern’s proposal, we find that including it

improves model fit somewhat, even after accounting for the extra complexity.

11 We computed the marginal likelihood by Monte Carlo simulation, taking 104 samples per participant

and per model. We sampled model parameters from weakly informative priors, sampling α from an

exponential distribution with rate 1/2, and s from an exponential distribution with rate 1. We sampled γ

and J as 1 + V , where V is exponentially distributed with with rate 1/4, and σ as .5 + W , where W is

exponentially distributed with rate 2. Bayes Factors are computed as eLLmodel1/eLLmodel2 , where LLmodelX

is the marginal log-likelihood for model X.
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where m is the model prediction (σ and s are free parameters we fit to the data).12

Results

Figures 6 and 7 show the average ratings, along with model predictions for the

compression and probability-maximizing model (fit at the group level), for Study 1a and

1b. Overall, participants’ mean ratings for a guess tend to closely track the probability of

that guess. As such, the probability-maximizing model has the best fit to the data at the

group level, see Table 1. Ratings do not track probability perfectly, however. Consider for

example the urn with profile [9,1,1,1], with nine balls of one color and one ball each for the

other colors: participants rate a guess of size 1 (that mentions only the most frequent color,

and has probability 9/12) as better than a guess of size 3 (with probability 11/12).

Looking at the data at the individual level reveals a richer picture: different

participants appeared to use different strategies (see Figure 9). While many participants

were probability-maximizers, a substantial number of participants exhibit a more subtle

pattern of judgments. Formally, about half of participants are best-fit by the naive

probability-maximizing model, while among the remaining participants, about two-thirds

are best-fit by the compression model (see Table 1). Figure 9 displays the individual-level

correlations between model and participant predictions, showing that the

probability-maximizing model provides quite a bad fit for some participants.

The first set of participants rated the quality of a guess mostly on the basis of its

probability. They gave highest ratings to guesses that mention all possible outcomes and

therefore have probability 1. Figure 8 (left panel) shows the ratings made by one such

participant (in Study 1b). These participants are not easily accounted for by our

compression model, because the probability of a guess is only an imperfect proxy of its

quality as an encoding of the underlying distribution. In contrast, the

12 The transformation f(m) = 1 + 8ms maps model predictions onto the 1-9 scale used by participants (see

e.g. Griffiths & Tenenbaum, 2005). The trade-off model predictions are unbounded, so we first re-scale

these predictions to the interval [0, 1] before applying the transformation.
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Figure 6

Study 1a: Average participant ratings (black), along with predictions of the compression

(purple) and probability-maximizing model (orange). The trade-off model makes the exact

same predictions as the probability model here (best-fitting value of J at the group-level is

J = 1). Error bars represent the standard error of the mean. Grey dots display individual

ratings (jittered for visibility). Panel labels represent the profile of an urn: for example, an

urn labelled [9,1,1,1] has 9 balls of one color, and one ball each of the other colors.

probability-maximizing model (as well as the trade-off model, which reduces to the

probability-maximizing model when setting J = 1) naturally explains these participants’

judgments. The presence of probability-maximizing participants explains why the

compression model has an overall poorer group-level fit than the other models.

There was nonetheless also a substantial number of participants (in both studies)

who did something different than probability-maximizing—see for example the participant

highlighted on the right of Figure 8. These participants favored long guesses when colors

are equally frequent (as in the urn with profile [3,3,3,3] which has 3 balls of each color), but
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Figure 7

Study 1b: Average participant ratings (black), along with predictions of the compression

(purple) and probability-maximizing model (orange). The trade-off model makes the exact

same predictions as the probability model here (best-fitting value of J at the group-level is

J = 1). Error bars represent the standard error of the mean. Grey dots display individual

ratings (jittered for visibility). Panel labels represent the profile of an urn: for example, an

urn labelled [9,1,1,1] has 9 balls of one color, and one ball each of the other colors.

they preferred shorter guesses for urns where one color was predominant. For example, for

an urn with 9 red balls out of 12, these participants would favor the guess “The player will

draw a red ball”. For an urn with 6 yellow balls and 4 blue balls, many of them would favor

the guess “The player will draw a yellow ball or a blue ball”.

The judgments of these participants are naturally accounted for by the compression

model. The model favors guesses that mention the most likely outcomes, because such
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Model AIC (group-level fit) n best fit (AIC) n best fit (BF)

compression (Study 1a) 7059 11 8

trade-off (Study 1a) 6886 6 5

probability (Study 1a) 6884 21 22

compression (Study 1b) 6383 15 11

trade-off (Study 1b) 6385 7 7

probability (Study 1b) 6383 17 18
Table 1

Model Fit, Study 1a and 1b. AIC: Akaike Information Criterion (lower values indicate

better fit). n best fit: number of participants best fit by each model. We classify a

participant as best fit by a model if that model has the lowest AIC, or if the model’s Bayes

Factor is larger than 3 against all other models.

guesses implicitly encode a distribution that is close to the speaker’s probability

distribution over possible outcomes. Therefore the model naturally favors short guesses

when one or a few colors dominate (e.g. an urn with 9 red balls out of 12), and long

guesses when all colors have the same frequency.

The trade-off model can also account for this pattern of judgments. The model

values guesses that are both likely and specific. For an urn with 9 red balls out of 12, the

guess “it will be red” is likely enough (it will come out true 75% of the time), and it is very

specific because it rules out 3/4 of the possible outcomes. The model favors longer guesses

(like “it can be any color”) for urns with more equal color frequencies, as the gain in

specificity from leaving out one color is not worth the decrease in probability.

Finally, we observe a U-shaped relationship between guess size and guess quality for

some urn profiles. This U-shaped pattern is apparent at the group level, for example for urn

profile [9,1,1,1], see Figures 6 and 7. It can also be found at the individual level, especially

among participants who are not best-fit by the probability-maximizing model—see for
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Figure 8

Ratings from two representative participants in Study 1b, along with the predictions of the

compression (purple) and trade-off (green) models, fitted to these participants’ data. The

participant on the left appears mostly sensitive to the probability of a guess, while the

participant on the right has a more subtle pattern of judgments, sometimes preferring less

likely, shorter guesses. Panel labels represent the profile of an urn: for example, an urn

labelled [9,1,1,1] has 9 balls of one color, and one ball each of the other colors.

example the participant at the right of Figure 8.13 To give an example, when the urn has 9

red balls and 1 ball of each other color, a participant might rate a size-1 guess (‘Red’) and

a size-4 guess (‘Red, Green, Yellow or Blue’) as both better than a size-2 guess (‘Red or

Green’) or a size-3 guess (‘Red, Green or Yellow’). As discussed in the introduction, the

trade-off model cannot (even in principle) predict this pattern. In contrast, the

compression model often exhibits a U-shaped pattern when participants’ judgments do.

13 Figures for all individual participants are available on the Open Science Framework at

https://osf.io/wz649/?view_only=8d7019ee2b8d456d8c3c9b29049b75aa.

https://osf.io/wz649/?view_only=8d7019ee2b8d456d8c3c9b29049b75aa
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Figure 9

Study 1: Individual model fits. Each point corresponds to the correlation between the

judgments of one participant and the trade-off model (green), the compression model

(purple) or the simple probability model (orange). Gray lines connect points belonging to

the same participant.

Discussion

Study 1 provides initial evidence for our rational analysis of guesses in terms of

compression, and to some extent for Dorst and Mandelkern (2021)’s account in terms of an

accuracy-specificity trade-off. A substantial number of participants made judgments that

could not be accounted for by a pure probability-maximizing strategy, and were better fit

by the compression and the trade-off models.

We nonetheless still find that a large number of participants simply responded in

function of probability. This result might be a consequence of the relatively unnatural

response format (rating the quality of a guess). Some participants may have been induced

to rely on probability because this is the only measure of guess quality for which they have
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Figure 10

Study 2: Partial screenshot of the experimental interface.

an explicit concept.

In Study 2, we make the task more natural, asking participants to compose their

own guesses.

Study 2

Study 2 used the same setup as Study 1a, except that we let participants compose

their own guesses. For each urn, participants had to complete the statement “The ball

drawn from the box will probably be:”, and could make any of 15 possible disjunctive

guesses (for instance “Red or Blue or Green”, “Blue”, “Yellow or Green”, etc) by clicking

on four buttons on the screen, one for each color (see Figure 10). Clicking on a button

added the color to the guess. Participants could also remove a color already in the guess by

clicking on the button for that color again. The buttons were presented in a 2*2 array. The

position of each color in that array was randomized across participants, but was the same

across all trials for a given participant.

We also added two attention checks. During the instructions, participants were told

to make a guess with two colors to get familiar with the interface (the two colors were

randomly specified for each participant). Participants who did not include these two colors
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in their guess were excluded from analysis. Additionally, the last trial of the task contained

an urn in which two colors were absent. Participants who included a color that was absent

from the urn in their guess were excluded from analysis (we used this trial purely as an

attention check). The procedure was otherwise similar to Study 1a, and participants made

guesses about 13 different urns.

Modeling

In addition to the compression, trade-off, and naive probability models, we also

consider a simple heuristic model according to which participants include a color in a guess

if the number of balls of that color is at or above a given threshold θ. For example, if

θ = 2, people include in their guess all colors that are present in at least two balls in the

current urn – so, for the urn profile [6,3,2,1], people include the three most frequent colors

in their guess (because there are three colors with 2 balls or more), but they only include

one color for the urn profile [9,1,1,1]. See Appendix for complete model specification.14

To generate the probability that a given model would make a given guess, we passed

model judgments through a soft-max function, such that the probability of making a given

guess gi is a function of its quality relative to all other possible guesses one could make

about the current urn:

Pr(G = gi) ∝ eβV (gi) (7)

where V (gi) is the value that the model assigns to guess gi (for our main model, V (gi) is

given by equation 5), and β is an inverse temperature parameter controlling the

stochasticity of choices (lower values of β correspond to more stochastic choices).

14 We included this model because it occurred to us as a salient alternative hypothesis when we piloted the

task ourselves.
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Participants

We recruited 98 US residents (72 female, 22 male, 4 other, mean age: 33, sd: 16)

from Prolific. Participation was restricted to users with a more than 90% approval rate and

who had completed between 50 and 1000 previous submissions on the platform. We

excluded from analysis 34 participants who failed an attention check, yielding a final

sample of 64 participants.

Results

We can visually inspect some properties of people’s guesses by plotting the

proportion of guesses of different sizes for each urn profile (Figure 11). This reveals a lot of

diversity in the guesses that participants make, even for the same urn profile. Looking at

urn profile [5,3,3,1] for example, many participants made a guess mentioning a single color

(i.e. a guess of size 1), many others made a guess of size 3, and a smaller proportion of

participants made guesses of size 2.

Despite this diversity, are there systematic patterns in participants’ guesses? We

can first look at whether participants make guesses that are ‘Pareto-optimal’ in terms of

accuracy (i.e. probability of being correct) and specificity (the proportion of possible

outcomes they leave out). A guess is optimal in that sense if it is impossible to construct a

guess that is more specific but not less accurate than the current guess, or more accurate

but not less specific. In our context, a guess is Pareto-optimal if there is no other color in

the current urn that is strictly more frequent than one of the colors mentioned in the

guess.15 We find that the overwhelming majority (98%) of participants’ guesses are

15 What we call ‘Pareto-optimality’ has also been called ‘cogency’ by Holguin (2022), and ‘filtering’ by

Dorst and Mandelkern (2021). Pareto-optimality along the accuracy-specificity axis is obviously a

prediction of the trade-off model, but it is also predicted by our information-theoretic model. This is

because if a guess g mentions color B but not color A, and A is more frequent than B in the current urn,

then a guess g′ that mentions A instead of B would a strictly better encoding (in information-theoretic

terms) of the underlying probability distribution.
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Figure 11

Study 2: Proportion of participants making a given guess, as the function of the size,

accuracy and specificity of the guess, for each urn profile. The size of a circle corresponds

to the proportion of participants making a guess with the corresponding accuracy and

specificity. Solid Black lines represent the Pareto frontier: guesses that can’t be made more

specific without losing accuracy, or vice-versa. Dashed black lines represent the inefficiency

frontier: guesses that can’t be made worse on one dimension without getting better on the

other dimension.

Pareto-optimal (they lie along the black lines on Figure 11), compared to an expected 41%

for a random guesser.

Participants also appear sensitive to ‘inflection points’ in the exchange rate between

accuracy and specificity. Consider the urn profile [6,4,1,1]. Its Pareto frontier has a

relatively shallow slope between size-4 and size-2 guesses, and then a steep slope between

size-2 and size-1 guesses. Most participants made a size-2 guess, as if trading accuracy for

specificity up to the point where it was no longer efficient.

Because qualitative patterns like Pareto-optimality might also have simpler
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explanations, we now assess model fit quantitatively for a stricter test of our proposal.

Modeling results

We first fit each model at the group level, by finding the parameter values that

maximize the log-likelihood of the data under the model. Table 2 describes the fit of each

model to the data, and Table 3 shows the best-fitting parameter values for each model.

Model Pearson’s r AIC n best

Compression .964 1676 15

Trade-off .929 1960 27

Threshold .871 2388 7

Naive probability .428 3426 0

Random NA 4506 0
Table 2

Fit of each model to the data, Study 2. Pearson’s r indicates the correlation between the

proportion of participants making a guess and the model probability of making that guess.

AIC: Akaike Information Criterion — lower values indicate better fit. n best: number of

participants for which the model has a Bayes Factor larger than 3 against all other models.

The compression model has a very good fit to the data. The correlation between the

probability that the model makes a guess and the proportion of participants making that

guess is very high, r(193) = .964, p < .001. This correlation is still very large even when

restricting the analysis to the set of Pareto-optimal guesses, r(78) = .957, p < .001.

Thus, the compression model is able to accurately track how participants modulate

the size of their guesses as a function of the urn profile. This can be seen more clearly in

Figure 12, where we plot the proportion of (Pareto-optimal) guesses of a given size made

by the compression model and by participants, for each urn profile. Overall, participants

tend to make guesses that are assigned high probability by the model. For instance, for the

urn profile [4,3,3,2], most participants made a guess of size 3 (for instance, “it will probably
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Figure 12

Study 2: Proportion of human participants making a given guess, and model probability for

that guess, as a function of urn profile and guess size, for guesses lying on the Pareto

frontier. Note: for some urn profiles, several different guesses can correspond to the same

guess size. When this is the case, we compute the average choice probability across all these

guesses. Note that probabilities do not necessarily sum to 1, because guesses lying outside

the Pareto frontier are not represented.

be red or blue or green” for an urn containing 4 red balls, 3 blue balls, 3 green balls, and 2

yellow balls), and this is also the compression model’s preferred guess.

The model can also explain the variability in participants’ guesses. Guesses for urn

profile [5,3,3,1], for example, show a U-shaped pattern: most participants made guesses of

size 1 or 3, while a smaller proportion made size-2 guesses; this pattern is reflected in the

probability mass that the model assigns to these options. By contrast, when most

participants make the same guess (as for the urn profile [9,1,1,1], where almost all

participants make a size-1 guess), the model also puts most of its probability mass on that
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Model β α Param1

Compression 46.8 1.14 γ = 1.99

Tradeoff 8.11 2.11 J = 3.01

Threshold 5.30 3.41 θ = 3

Naive probability 5.39 7.09
Table 3

Best-fitting values of the model parameters, for each model, Study 2.

guess.

Participants also appear to have a preference for ‘clustering’, in the sense that when

two outcomes A and B have a similar probability, they rarely include one outcome in their

guess but not the other. For the urn profiles [4,4,2,2] and [5,4,2,1], for instance, the vast

majority of participants made a guess that included the two most frequent colors. This

preference for clustering is also reflected in the compression model predictions.

The trade-off model has a slightly lower fit to the data than the compression model

: its predictions are correlated with human choice proportions at r(193) = .929, p < .001,

(see Figure A1 in the Appendix). The model is unable to explain some of the subtle

features of the data, such as the U-shaped patterns described above. The model predicts

that there is one optimal guess size for a given urn, and the quality of a guess diminishes

monotonically as a function of its distance from the optimal guess size. The trade-off

model also drastically under-estimates the proportion of participants who make a size-4

guess for an urn where all colors are equally frequent.

Next, we analyzed the data at the individual level: for each participant and each

model, we computed the marginal likelihood of the data under that model.16 Twenty-seven

16 We computed the marginal likelihood by Monte Carlo simulation, taking 104 samples per participant

and per model. We sampled model parameters from weakly informative priors, sampling α from an

exponential distribution with rate 1/2, β from an exponential with rate 1/50, θ from a uniform
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participants were best-fit by the trade-off model, while 15 participants were best fit by the

compression model, and 7 participants by the threshold model (there were also 15

participants for which only weak evidence favored a given model). As such, although the

compression model has the best fit to the data at the group level, the trade-off model is the

best-fitting model for a larger number of individual participants. In particular, some

participants adopted the policy of always making a size-1 guess, picking the most frequent

color in the urn. This relatively low-effort policy is well-modeled by the trade-off model by

setting J to a large number.

More generally, the trade-off model assumes that the length of a guess carries a

direct cost (because longer guesses are less specific). This assumption hinders the model’s

ability to capture the group-level distribution of guesses (see above), but it can help it

capture the fact that making longer guesses took more effort in our task (they required

clicking on more buttons). So the model can to some extent capture the ‘laziness’ of some

individual participants.

The other models we considered had a worse fit to human judgment than the

models mentioned above. The naive probability model predicts that participants should

have made the maximally-inclusive guess (“Red or Green or Blue or Yellow”) every time,

because that guess always has probability 1. Yet this was never the modal guess, except for

the case where all colors are equally frequent. The simple threshold model is relatively

distribution, and sampling γ and J as 1 + V , where V is exponentially distributed with rate 1/4. We do

not use AIC to perform model comparison at the individual level because the small number of trials (13

discrete choices) per participant led to identifiability issues. Specifically, we performed a model recovery

analysis where we simulated the judgments of virtual participants, and fit these simulated data with the

compression and trade-off model. When simulating data under the assumption that the compression model

is the correct generative process, we find that 64% of simulated participants are nonetheless better-fit by

the trade-off model (as assessed by AIC). When generating simulated participants using the trade-off model

as the generative process, only 5% of simulated participants are incorrectly better-fit by the compression

model. This suggests that the trade-off model is more prone to over-fitting at the individual level.
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effective at finding the modal guess for most urn profiles, but is unable to account for the

variability in people’s judgments, predicting that almost all participants will select the

same guess for a given urn profile, see Figure A2 in the appendix. In exploratory analyses,

we find that the model has a relatively poor fit even when we allow its parameter values to

vary from participant to participant, showing that the model cannot explain variability in

the data by assuming that different participants have different thresholds.

Discussion

We asked people to make disjunctive guesses about the outcome of a simple game of

chance. If participants were motivated to maximize their probability of being correct, they

would have always made the guess that included all possible outcomes. Participants

actually made much more variable guesses, which varied in a systematic way as a function

of the relative frequency of colors in the urn.

Participants’ judgments are well-explained by our information-theoretic model,

according to which guesses encode an approximation of the speaker’s distribution over

possible outcomes. The model is able to explain subtle patterns in participants’ judgments.

For example, there were urns for which different participants made different guesses, and

urns for which almost all participants made the same guess. This pattern is reflected in the

model predictions, suggesting that participants vary in the guesses they make when the

model sees these guesses as equally good.

Participants’ guesses are also broadly consistent with an account of guessing at a

complementary, more descriptive level, according to which guesses strike a trade-off

between accuracy and specificity (Dorst & Mandelkern, 2021). However, while the trade-off

model provides a good account of many individual participants, it has difficulty accounting

for the specific shape of the group-level distribution of guesses. In the next two studies, we

investigate whether listeners interpret guesses as implicitly encoding a probability

distribution.
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Study 3

Results from Studies 1 and 2 suggest that guesses encode a compressed

representation of the speaker’s subjective probability distribution. Can listeners decode

this representation? To address this question, we run an ‘inverted’ version of Study 2: we

show participants someone else’s guess, and ask them to infer which urn the speaker was

looking at. Specifically, in each trial, we show participants a speaker’s guess as well as two

urns A and B, and ask them to indicate which urn they think the speaker was looking at

when he made the guess.

Computational modeling

The optimal Bayesian decoder for this task is given by:

Pr(Urn X|Guess) ∝ Pr(Guess|Urn X)Pr(Urn X) (8)

where the likelihood Pr(Guess|Urn X) is the probability that a speaker looking at Urn X

would make a given guess. We further assume a uniform prior over urns (i.e.

Pr(Urn A) = Pr(Urn B)), allowing us to re-write the above expression as:

Pr(Urn B|Guess) = Pr(Guess|Urn B)
Pr(Guess|Urn A) + Pr(Guess|Urn B) (9)

We do not have direct access to the likelihood Pr(Guess|Urn X), but we can estimate it.

We do so in two different ways. Our first approach makes no theoretical commitment

about the speaker’s behavior, but simply estimates the likelihood Pr(Guess|Urn X) as the

proportion of participants in Study 2 who made that guess when looking at Urn X.17 Our

second approach uses the likelihood defined by a given computational model tested in

Study 2 (for example the compression model), with the best-fitting parameters that we

derived at the group level for that model in our analysis of Study 2.

Note that Equation 8 describes a pragmatic listener (cf. Goodman & Frank, 2016),

who can approximately model the way that speakers make guesses, and makes inferences

17 We add ϵ = 0.001 to the proportion in cases where no participant in Study 2 made that guess, to avoid

divide-by-0 errors in later computations.
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by inverting this model.18 Therefore we call the model a ‘pragmatic listener’, although we

do not make strong process-level claims about the way participants complete the task.

Methods

Procedure

After signing a consent form and reading instructions (similar to the previous

experiments), participants first completed four trials of the production task from Study 2,

to get familiar with the setting. In the main task, we then asked participants to imagine

that another person called Bill also had to make similar guesses. For each trial, we

displayed two urns on the screen (labeled ‘box A’ and ‘box B’), as well as the guess that

Bill made, and asked participants which box they think he was looking at. We indicated

the guess made by the speaker in the following format:

“Bill said:

The ball drawn from the box will probably be:

[guess]”

Where [guess] was a disjunction of colors, for example ‘red’, or ‘green or yellow’.

Below the boxes, we asked “What box was Bill looking at?”, and participants answered

using a slider scale ranging from ‘Definitely Box A’ to ‘Definitely Box B’, but otherwise

unlabeled (internally the scale ranges from 1 to 100). See Figure 13 for a partial screenshot

of the experimental interface19.

To keep the task non-trivial, we only used pairs where each urn has the same

18 Note that the pragmatic listener in the current task is not the same as the ‘literal’ listener whose

inferences are anticipated by the speaker in our model for Studies 1 and 2. There is no inconsistency with

the current analysis, however: in Studies 1 and 2, the speaker only sees one urn, and so he cannot

strategically adjust for the specific challenge faced by our listeners in the current task.

19 Instructions also made clear that among the two urns on the screen in a given trial, one was a random

urn that was not shown to the speaker. That is, the speaker does not have the opportunity to maximize

how informative his guess is with respect to the task of discriminating A from B.
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Figure 13

Study 3: Partial screenshot of the experimental interface.

frequency ordering over colors, and guesses that are Pareto-optimal in the sense defined in

Study 2 (colors included in the guess are more or equally frequent, in both urns, than

colors not included in the guess). Thus participants could not solve the task simply by

exploiting differences in frequency orderings across urns (there were never any trial where,

for instance, the guess is ‘yellow’ and yellow is the most frequent color in urn A but the

third most frequent color in urn B).

We designed stimuli by computing, for every possible pair of urn profiles and each

possible guess that obey the criteria above, the prediction of our Listener model (calibrated

with the compression-based likelihood). We then randomly sampled 7 trials for each guess

size (from 1 to 4) that smoothly spanned the range of predicted probabilities (from 0 to

100% chance of box B), resulting in a total of 28 trials (see Table A.1).
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We also generated two attention check trials with an obvious answer, where each

urn has nine balls of a given color and one ball of each other color, but the dominant color

is different in each urn, and the guess mentions the dominant color in urn A. Participants

who did not give a rating of 50% of more for urn A in either trial were excluded from

analysis. Trials were presented in randomized order, and the position of the urns within a

pair (which urn was assigned to ‘box A’) was counter-balanced.

Participants

We recruited 49 participants (23 female, 1 other, mean age=45, sd=15) from

Prolific. Participation was restricted to US residents with a 90%+ approval rate who had

taken between 50 and 1000 previous studies on the platform. Participation took on average

10 minutes, and participants were compensated £1.20 for their participation. We excluded

from analysis 13 participants who failed at least one attention check, for a final sample of

36 participants20.

Results

The model derived from the empirical production data in Study 2 provides a good

account of the current data, with no free parameter. On average, the correlation between a

participant’s judgments and model predictions was r(26) = .50, inter-quartile range = .32

to .69. Aggregating across participants, the correlation between model predictions and

mean human judgment was r(26) = .81, p <.001; see Figure 14. Results for example trials

are displayed in Figure 15.

We then perform the same analysis for the model that uses the likelihood from the

compression model. On average, the correlation between a participant’s judgments and

20 The first attention check was the same as in Study 2, but participants in the current experiment failed

that attention check at a higher rate than in Study 2. Excluding every one of these participants would have

led us to discard more than half the sample (final N=23), so we adopted a softer criterion, retaining

participants who mentioned at least one the requested colors. Analysis with the stricter exclusion criterion

yields virtually identical results.
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Figure 14

Study 3: Mean human judgment (preference for box B) as a function of the predictions of

the pragmatic listener model with an empirical likelihood (derived from production data in

Study 2). Error bars represent the standard error of the mean.

model predictions was r(26)=.48, inter-quartile range=.20 to .72. Aggregating across

participants, the correlation between model predictions and mean human judgment was

r(26) = .79, p <.001; see Figure 16. We find a similarly good correlation when we use a

likelihood derived from the naive probability model (mean individual-level correlation,

r(26) = .49, inter-quartile range: .48 to .62; item-level correlation: r(26) = .79, p < .001).21

21 We report this result for completeness, but given the poor performance of the naive-probability model in

the previous study, we suspect that the good performance of the naive-probability likelihood is an artifact

of the following property of the current task. To perform well in the task, a pragmatic listener does not

necessarily need to correctly rank the probability of making a guess within a given urn; what matters is the

relative likelihood of the guess across urns. So, even though the naive-probability likelihood incorrectly

predicts that most people will make a size-4 guess for an urn with profile [9,1,1,1], it correctly predicts that

the proportion of size-4 guesses will be higher for urn profile [3,3,3,3] than urn profile [9,1,1,1]. Therefore a
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Figure 15

Study 3: Results for a selection of trials (see Figure A4 for all trials). Grey dots represent

individual ratings; predictions for the empirical model are in purple, and mean human

ratings are in blue. Error bars represent the standard error of the mean. (The particular

urns and guesses displayed here are meant to illustrate the abstract structure of a trial:

during the experiment the ordering over colors and ball positions were procedurally

generated for each participant.)

Performing a similar analysis with likelihoods from the trade-off and threshold

models (again with the parameters obtained in Study 2) yields slightly lower agreement

with the data, r(26) = .73, p <.001 (trade-off model) and r(26) = .63, p < .001 (threshold

model).

Could participants simply have chosen the urn for which the guess had the highest

probability of being correct? Such a heuristic would lead people to be indifferent between

the two urns when the speaker makes a size-4 guess, since a size-4 guess always has

probability 1 of being correct, regardless of the urn contents. Participants actually drew

pragmatic listener using a naive-probability likelihood can successfully infer that someone who made a

size-4 guess was looking at the [3,3,3,3] urn.
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Figure 16

Study 3: Mean human judgment (preference for box B) as a function of the predictions of

the pragmatic listener model with the compression-based likelihood. Error bars represent the

standard error of the mean.

strong inferences even for size-4 guesses—see for example the trial on top of Figure 15.

Discussion

The current results suggest that people can decode the distributional information

encoded in a guess, at least in the context of verbal communication. Participants were able

to reverse-engineer which probability distribution the speaker had in mind (i.e. which urn

he was looking at), on the basis of the speaker’s guess. Specifically, their judgments were

well-predicted by a Bayesian decoder calibrated with the production data from speakers in

Study 2, without any free parameter.

The fact that people’s judgments are well-predicted by a normative benchmark

provides evidence that guesses perform their communicative function well. Future research

could more deeply investigate the exact process by which listeners make their inferences. In
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the next study, we provide additional evidence that people extract distributional

information from a guess.

Study 4

To test the generality of our framework, here we investigate its predictions in a

different setting and in a different task. Specifically, we study how people evaluate guesses

about continuous quantities, in a context where the correct answer is already known.

Study 4 is a conceptual replication of a classic experiment by Yaniv and Foster

(1995). We ask participants to evaluate the quality of a guess relative to the ground truth.

For instance, suppose that the speaker guessed that there are between 165 and 185 member

states in the United Nations. Given that there are actually 193 member states in the UN,

how good was the speaker’s guess? We make the hypothesis that people treat the guess as

implicitly encoding a probability distribution over the answer, and judge that a guess is

good if the probability distribution they decode from the guess assigns a high probability

to the correct answer (see Figure 17).

Model

Our general framework assumes that listeners infer a probability distribution Qg

from a guess g. The current study focuses on testing this assumption. Specifically, we test

the hypothesis that when people evaluate an interval guess of the form “x is between xlow

and xhigh” (for example, “There are between 165 and 185 member states in the United

Nations”), they implicitly treat this guess as encoding a probability distribution.

Intuitively, such a guess conveys information both about the mean of the speaker’s

distribution (it is probably around the midpoint of the interval), and about its standard

deviation (the speaker makes wider guesses the more uncertain he is). Therefore, we assume

that the listener infers that the speaker’s distribution has mean µ and standard deviation

σ, where µ is the middle of the interval, and σ is proportional to the interval width:

µ = xlow + xhigh − xlow

2 (10)
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σ = k(xhigh − xlow) (11)

where k is a free parameter. There are an infinity of possible distributions that obey these

constraints, but we assume that the listener infers a normal distribution, with mean µ and

variance σ2. This choice is motivated on normative grounds: The normal distribution is the

maximum entropy distribution for known mean and variance, meaning that if all we know

about a distribution is its mean and its variance, a normal distribution is the representation

that imports the fewest extra assumptions (Jaynes, 2003).22 The quality of a guess is then

the probability that this distribution assigns to the correct answer; see Figure 17.

Accuracy-specificity model

We also consider whether people’s judgments strike a trade-off between accuracy and

specificity, following the original model that Yaniv and Foster (1995) used to model their

data. According to this model, the quality of a guess is inversely related to the quantity:

L = |t − m|
w

+ α log(w) (12)

where t is the correct answer, m = xlow + (xhigh − xlow)/2 is the midpoint of the

participant’s guess, w = xhigh − xlow is the width of the interval, and α is a free parameter

controlling the weight that people assign to specificity relative to accuracy. Intuitively, the

first term ( |t−m|
w

) is inversely related to the accuracy of the guess, while the second term

(log(w)) is inversely related to its informativeness.

Method

Participants were told to imagine that they were a researcher preparing for a

presentation, and that they had asked two research assistants for their estimates about a

22 Technically speaking, many of the quantities in our study lie on partially bounded intervals (for example

a distance cannot be less than 0 kilometers) and thus normality is only an approximation of the maximum

entropy distribution. To keep the model simple and intuitive we pass over this issue.
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Figure 17

Illustration of our model. Listeners infer a probability distribution whose mean and

variance are determined by the center and the width of the interval, respectively. The

dashed line indicates the probability assigned to the correct answer. The first interval

(orange) should be seen as a better guess than the second interval (blue), despite not

formally including the correct answer. Distributions were generated by multiplying the

width of an interval by k = .74, the value that provides the best fit to our experimental data.

given number (Yaniv & Foster, 1995). Participants were for example told that the two

assistants were asked the question “what was the date of the first transatlantic flight?”,

and that one assistant responded “1930 to 1970” and another responded “1915 to 1923”,

while the correct answer was 1927. Participants were asked which of the two assistants

gave a better answer. To prevent carry-over effects, they were also asked to imagine that

the assistants were different in each scenario.

Each participant made a choice for 20 different trials (see Table A.3 in the

appendix). Each trial features a ground truth (the correct answer to the question) and two

different interval guesses (one made by assistant A and one made by assistant B).

Participants were asked “which estimate is better?”, and had to select either A or B. Trials
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were presented in randomized order, and the identity of the assistants (whether assistant A

and B made a given statement) was randomized across trials and participants. We also

included as an attention check a trial for which one guess was unambiguously better, and

excluded from analysis participants who failed to select that guess (data from this trial

were not otherwise included in the main analysis).

Participants

We recruited 99 US residents (51 male, 46 female, 1 other, mean age = 34.4, sd =

12.2) from Prolific. Participation was restricted to users with a more than 90% approval

rate and who had completed between 50 and 1000 previous submissions on the platform.

We excluded from analysis one participant who failed an attention check, yielding a final

sample of N=98.

Computational modeling

In addition to the compression and trade-off models, we tested simple heuristic

models (following Yaniv & Foster, 1995). According to these models, the quality of a guess

is determined by:

• ‘Nearest-boundary’ distance: (inverse of) distance between the ground truth and the

interval boundary nearest to the ground truth.

• ‘Farthest-boundary’ distance: (inverse of) distance between the ground truth and the

interval boundary farthest from the ground truth.

• ‘Absolute error”: (inverse of) distance between the ground truth and the midpoint of

the interval.

• ‘Normalized error’: (inverse of) absolute error divided by the width of the interval.

• ‘Interval width’: (inverse of) interval width.

• ‘Inclusion’: a binary variable indicating whether the interval contains the ground

truth.



GUESSING AS COMPRESSION 49

For each model and each trial, we first compute the quality of the guesses made by

assistant A and B under the model. We then compute the probability of choosing a guess

via a soft-max function over guess quality, with a parameter β controlling the stochasticity

of answers (as in Study 2, see equation 7). We fit the models to the data, both at the

group- and the individual level, by finding the parameter values that maximize the

log-likelihood of the data.

Results

For 18 out of 20 items, a statistically significant majority of participants chose the

guess that the compression model (as well as the trade-off model) judged to be better.

Human choice proportion for the 2 other items was not significantly different from 50%.

All the heuristic models have lower classification accuracy (see Table 4).

The quantitative predictions of the compression model were highly correlated with

the proportion of participants choosing a given guess, r(18) = .865, p < .001, see Figure 18,

although the best-fitting model was the trade-off model, r(18) = .915, p < .001.

Remarkably, the predictions of the trade-off model and the compression model are highly

correlated with each other, r(18) = .951, p < .001. All heuristic models had a lower fit to

the data than the compression or the trade-off model.

To verify that the results are not an artifact of averaging or over-fitting, we also

conducted individual-level model comparisons, both by computing the Akaike Information

Criterion (AIC) for each participant and for each model, and by computing Bayes Factors

derived from marginal likelihoods23; see Table 4. Again the compression and trade-off

model have the best fit to the data, with the trade-off model fitting slightly better. We also

note some heterogeneity in the individual data. Although a substantial proportion of

participants are best fit by the compression or trade-off models, some participants are best

23 We computed the marginal likelihoods by Monte Carlo simulation, drawing 104 samples per participant

and per model. We used weakly informative priors, sampling each parameter from an exponential

distribution with rate 1.5.
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Figure 18

Study 4: Proportion of participants preferring the guess by assistant X over the guess by

assistant Y, along with predictions of the compression (purple) and trade-off (green)

models. For comparison we also include a heuristic model according to which a guess is

good if it contains the correct answer (orange)—see Table 4 for the fits of other heuristic

models. Error bars represent standard errors. See Table A1 for list of trials.

fit by heuristic strategies; for example the data from 15 participants are best explained by

the normalized error model. We note however that there are relatively few participants for

which the evidence in favor of a model is strong (i.e. BF > 3 against all other models).

Heuristic models

Here we give some intuition for why the heuristic strategies fail to account for

people’s judgments.

The inclusion heuristic says that an interval that fails to include the correct answer

should never be preferred to one that does24. For instance, to the question “how many

24 Some accounts of the semantics of interval guesses (e.g. Egré et al., 2023) seem to make this prediction,

since they posit that all the probability mass should fall within the interval.
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countries are in the UN?” (correct answer: 193), the guess “40 to 300” should be preferred

to “165 to 185” since only the former actually includes the correct answer. Yet 76% of

participants chose the latter guess.

Classification

accuracy
AIC

N best

(AIC)

N best

(BF)
Pearsons’ r β param1

Compression 1 1931 15 4 .865 .58 k = .74

Trade-off 1 1792 46 5 .915 1.59 α = .49

Absolute error .9 2279 6 0 .397 1.23

Normalized error .55 2540 15 3 .517 .31

Nearest boundary .55 2650 6 0 .405 2.47

Farthest boundary .65 2358 0 0 .348 .50

Inclusion .7 2653 9 3 .155 .23

Interval Width .6 2468 1 0 .230 .16

Random .5 2717 2 0 NA
Table 4

Fit of the different models to the data, Study 4. Classification accuracy is the proportion of

items where the model’s preferred guess is chosen by 50% or more participants. AIC:

Akaike Information Criterion (lower values indicate better fit), calculated as the sum of

individual-level AICs. N best (AIC): number of participants for which the model has the

lowest AIC. N best (BF): Number of participants for which the model has a Bayes Factor

larger than 3 against all other models. Pearson’s correlation: correlation between model

prediction and proportion of participants making a choice. β and param1 indicate the

group-level best-fitting value of parameters for each model.

The normalized and absolute error heuristics both posit that good guesses are those

whose midpoint is close to the ground truth, and that people are not penalized for giving

overly large intervals. For example, to the question “what is the monthly salary of the Fed
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chairman?” (correct answer: $16900), the guesses “$18000 to $22000” and “$4000 to

$35000” both have a midpoint about $20000, which predicts that people should be

indifferent among them. In fact, 75% of participants preferred the first guess.

The nearest-boundary heuristic holds that people prefer intervals that have at least

one boundary close to the correct answer. For example, to the question “what is the

average gestation length of a horse? (correct answer: 11 months), the guess “12 to 30

months” has a boundary (12 months) which is very close to the correct answer, so people

should prefer this guess to the guess “7 to 9 months”. Yet 60% of participants preferred the

latter guess. Similarly, the farthest boundary heuristic holds that people prefer guesses

that minimize the distance between the correct answer and the boundary farthest from the

correct answer. For example, to the question “what is the yearly budget of the US

department of education ($68 billion), the guess “$75 to $120 billion” has a boundary ($120

billion) that is very far from the correct answer, so people should prefer the guess “$95 to

$110 billion”. In fact 96% of participants chose the first guess.

Original data from Yaniv & Foster (1995)

The original data for Yaniv & Foster (1995) have been lost (Yaniv, personal

communication), but we can analyze data from the eight sample items displayed in their

paper. We find that the compression model has a good fit to these data, r(6) = .96, p <

.001, see Appendix for details.

Discussion

We conceptually replicated the results of Yaniv and Foster (1995): when people

evaluate guesses relative to the correct answer, they prefer those that strike a trade-off

between accuracy (being close to the correct answer) and specificity (not including too

wide a range). We also find support for our account of why people have this preference:

guesses that are both accurate and specific implicitly encode a probability distribution that

assigns a high probability to the correct answer. Specifically, a model that infers the

speaker’s subjective probability distribution from the guess, and computes the probability
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that the inferred distribution assigns to the true value, accounted for the data almost as

well as Yaniv & Foster’s original model. Furthermore, the predictions of the two models

were highly correlated with each other. Participants’ judgments could by contrast not be

explained by simple heuristics, such as preferring guesses whose interval contains the

correct answer, or guesses whose midpoint is closer to the correct answer.

The production of interval guesses

The current results have implications for how speakers should make interval guesses:

they should adjust the width of their interval in such a way that the listener accurately

infers the uncertainty in the speaker’s distribution. We find that listeners in our

experiment are best-fit by k = .74: they interpret the width of the interval as equal to 1
0.74

times the standard deviation of the underlying probability distribution. If speakers use a

similar value of the scaling parameter k to modulate the width w of their guesses, then

they should generate intervals that extend within about .67σ from their subjective mean on

each side, since σ = kw implies w
2 = σ

2k
= .67σ.

In a normal distribution, about 50% of the probability density lies within 0.67

standard deviations of the mean, so speakers with k = .74 should make interval guesses

that they see as about 50% likely to contain the correct answer. If we also assume that

speakers are approximately well-calibrated (they can reliably estimate their uncertainty),

this hypothesis predicts that speakers will offer intervals that contain the correct answer

only about half the time. There is indeed a large literature supporting this prediction

(Juslin et al., 1999; McKenzie et al., 2008; Yaniv & Foster, 1997; Teigen & Jørgensen, 2005;

Alpert & Raiffa, 1982; Soll & Klayman, 2004; Klayman et al., 1999; Cesarini et al., 2006;

Moore et al., 2015; Russo & Shoemaker, 1992). For example, Yaniv and Foster (1997)

asked participants to make interval guesses about a variety of real-world quantities, and

found that the proportion of intervals that contained the correct answer was consistently

slightly less than 50% (46%, 43% and 45% respectively in their three studies).

Interestingly, in one of their studies they asked participants to give 95% confidence
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intervals, i.e. intervals that participants were 95% confident included the correct answer.

Yet only about 45% of the intervals did actually include the correct answer. This rate was

similar to the hit rate in two other studies where participants did not have to reach a

specified target (Yaniv & Foster, 1997).

These results, and many others (e.g. Teigen & Jørgensen, 2005; Cesarini et al.,

2006) suggest that when participants are asked to construct a 95% confidence interval, they

largely disregard the overt instruction and instead construct a guess that is optimized for

another purpose, i.e. give a good encoding of their subjective probability distribution. The

interval they give is much too narrow for a 95% confidence interval, but it would have been

remarkably effective for communicating their subjective distribution to the listeners in the

current study.

General Discussion

People often make judgments about uncertain facts or events. These judgments are

often compared to a normative standard according to which one should endorse statements

as a function of the probability that they are correct. We have suggested that it is often

useful to instead consider people’s judgments as good solutions to a Distribution-encoding

problem: statements about uncertain facts or events often work as compressed summaries

of a probability distribution.

This account makes successful quantitative predictions about what guesses people

make (Study 2), what inferences listeners draw from a guess (Study 3), and what people

judge to be a good guess both when they already know (Study 4) or don’t know the correct

answer (Study 1). Below we explore how our account sheds light on puzzling phenomena in

probabilistic reasoning. Then, we discuss the scope of our work, some limitations, and

directions for future research.

Accounting for puzzling phenomena in probabilistic reasoning

Here we apply our perspective to some already-documented patterns in probabilistic

reasoning. Note that some of these patterns occur in tasks where Probability-maximizing
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seems to be the appropriate normative standard. These tasks require the participant to

estimate the probability of a single outcome, for example. It is at first sight not obvious

why our perspective would be relevant to understanding these phenomena, but we suggest

that the human mind sometimes over-applies its tendency to solve for the

Distribution-encoding problem. In other words, people might sometimes respond as if they

were solving the Distribution-encoding problem even in tasks where they are explicitly

asked for Probability-maximizing.

Surprise and likelihood

Whether we see an outcome as surprising does not only depend on the probability

of that outcome. It also depends on the probability of other possible outcomes (Teigen &

Keren, 2003; Attneave, 1959; Kahneman & Tversky, 1982). For example, an event that had

a 10% probability is surprising if there was another event with probability 30%, but is less

surprising if this was actually the most probable event (Teigen & Keren, 2003). Judgments

of whether an event was ‘likely’ also depend on the probability of alternative possible

events (Teigen, 1988; Windschitl and Wells, 1998, see also Lassiter, 2011; Yalcin, 2010).

When estimating the value of a continuous quantity, people also judge that intervals that

lie in the center of the relevant distribution are more likely than equally-probable larger

intervals in the tails of the distribution (Teigen et al., 2022).

We suggest that when people make judgments of surprise and likelihood, they often

do so with the goal of communicating their subjective probability distribution about the

relevant outcome or state of affairs. From this perspective, people judge a possible outcome

as likely in order to communicate that this outcome would be mentioned in a good guess

about what will happen. Our model predicts that an outcome with probability p will

sometimes be included and sometimes be left out of the optimal guess, depending on the

probability of other outcomes. This naturally explains why our judgments of whether an

outcome is likely depend on the probability of other outcomes. Our proposal also explains

why interval estimates in the center of a distribution are judged as more likely than
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intervals in the tails: intervals in the tails of a distribution are poorer representatives of the

distribution, and therefore make for poor guesses.

Similarly, expressing surprise at an event might communicate what the speaker’s

subjective distribution was like before the speaker observed the event. So, if the speaker

assigned 10% probability to event A but 30% probability to event B, and A subsequently

happens, the speaker expresses surprise as a way to convey that he would not have guessed

that A would happen.

Overconfidence in interval estimation

People consistently produce over-confident confidence intervals. For example, when

people are asked to estimate a numerical interval that they think is 95% likely to contain

the correct answer to a question, they give an interval that contains the correct answer

about 50% of the time (Juslin et al., 1999; McKenzie et al., 2008; Yaniv & Foster, 1997;

Teigen & Jørgensen, 2005; Alpert & Raiffa, 1982; Soll & Klayman, 2004; Klayman et al.,

1999; Cesarini et al., 2006; Moore et al., 2015; Russo & Shoemaker, 1992). Existing

explanations of this pattern assume that it arises from cognitive limitations (e.g. Juslin

et al., 2007; Zhu et al., 2023; Moore, 2022). As we argued in our discussion to Study 4,

apparent overconfidence might also arise because speakers are trying to communicate

about their subjective probability distribution. Participants in interval production studies

might be disregarding or misunderstanding the experimenter’s instructions (e.g., of

producing a 95% confidence interval) and instead might be trying to communicate their

uncertainty in a way that conforms to the expectations of an audience. Our experimental

results in Study 4 suggest that the audience indeed expects interval estimates to represent

50% confidence intervals.

Extension fallacies

In a classic paper, Tversky and Kahneman (1983) documented a conjunction fallacy

in intuitive judgment: people sometimes assign a higher probability to A&B than to A, in
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blatant violation of the extension rule of probability theory25. For example, Tversky and

Kahneman (1983) gave participants the following description:

“Linda is 31 years old, single, outspoken, and very bright. She majored in

philosophy. As a student, she was deeply concerned with issues of discrimination and social

justice, and also participated in anti-nuclear demonstrations.”

Participants tended to rate the statement ‘Linda is a bank teller and is active in the

feminist movement’ as more probable than ‘Linda is a bank teller’. We suggest that the

Distribution-encoding standard might (at least partly) contribute to the conjunction

fallacy. That is, people tend to make conjunction errors when the conjunction A&B is a

better encoding of their subjective probability distribution than A. In the Linda case,

‘Feminist and Bank Teller’ (A&B) is a better guess than ‘Bank Teller’ (B), under plausible

assumptions. We assume that the speaker implicitly considers a probability distribution

over the following four possibilities:

• Linda is NOT a feminist and is NOT a bank teller. (¬A¬B)

• Linda is a feminist and is NOT a bank teller. (A¬B)

• Linda is NOT a feminist and is a bank teller. (¬AB)

• Linda is a feminist and is a bank teller. (AB)

Under our account, the guess ‘Feminist and Bank teller’ communicates that the

fourth possibility (AB) is more likely than any of the other three possibilities. The guess

‘Bank teller’ communicates that the last two possibilities (¬AB) and (AB) are more likely

than the first two. For example, assuming that the speaker has subjective probabilities

Pr(A) = .6 and Pr(B) = .05, and that Pr(A) and Pr(B) are independent, the speaker’s

distribution can be represented by the black bars in Figure 19. Setting the γ parameter at

25 The extension rule states that if S2 is a subset of S1, the probability of S2 cannot exceed that of S1.
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Figure 19

Modeling Tversky & Kahneman’s Linda case. Black bars represent the speaker’s subjective

distribution. A: Feminist, B: Bank teller. The guess ‘Bank teller’ suggests a probability

distribution like the one in red. The guess ‘Bank teller & Feminist’ suggests a distribution

like the one in blue. Although both guesses are poor approximations of the speaker’s

distribution, ‘Bank teller & Feminist’ is better than ‘Bank teller’, because it diverges less

from the speaker’s distribution (KL = .72 vs KL = .89). Here we used Pr(A) = .6,

Pr(B) = .05, but the result is not sensitive to the specific parameters used, as long as

Pr(Feminist) > Pr(Bank teller).

γ = 2, the distributions that a listener would infer from ‘Bank Teller’ and ‘Bank Teller and

Feminist’ are shown in red and blue.

In absolute terms, both statements make for bad guesses, because they imply that

Linda is more likely than not to be a bank teller; a better guess would have been ‘Linda is

a feminist and is not a bank teller’. However, ‘Bank teller and Feminist’ is a good guess

relative to ‘Bank teller’; we suggest that this difference in the guess value of the two

statements might play a key role in the corresponding difference in probability judgments.

People also violate the extension rule of probability theory when they judge that
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Pr(A) > Pr(A ∨ B), a mistake called the disjunction fallacy. Consider Danielle, a creative

and introverted woman who enjoys reading. People judge that she is likely to be a

Literature student, and rate this probability even higher than the probability that she is a

Humanities student—even though membership in the first category entails membership in

the second (Bar-Hillel & Neter, 1993).

Again, we suggest that the disjunction fallacy tends to arise when ‘A’ solves the

Distribution-encoding problem better than ‘A or B’. To illustrate, we consider a toy model

of the Danielle case where the speaker entertains the following possibilities:

• Danielle studies Literature

• Danielle studies History

• Danielle studies Engineering

• Danielle studies Chemistry

Guessing that Danielle is a Humanities student implies that she is more likely to be

a Literature or History major than she is to be studying Engineering or Chemistry.

Guessing that Danielle studies Literature implies that she is more likely to study Literature

than any other major. If the speaker thinks that Pr(Literature) is high enough compared

to Pr(History), the guess ‘Literature’ is a better approximation of his subjective

probability distribution than ‘Humanities’, see Figure 20.

There is of course already an extensive literature on the conjunction fallacy and

related phenomena (e.g. Tversky & Kahneman, 1983; Busemeyer et al., 2011; Bar-Hillel &

Neter, 1993; Hertwig & Gigerenzer, 1999; Costello, 2009; Tentori et al., 2004;

Ludwin-Peery et al., 2020; Sablé-Meyer & Mascarenhas, 2022; Chung et al., 2023).26

26 Our proposal is perhaps most closely related to proposals according to which conjunction errors arise

from conversational inferences. Our proposal is however distinct from previously proposed accounts along

this line. For example, it has been suggested that participants infer that a speaker who says ‘A’ instead of
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Figure 20

Modeling the disjunction fallacy. The speaker’ subjective distribution is in black. The guess

‘Literature’ suggests a probability distribution like the one in green. The guess ‘Humanities’

suggests a distribution like the one in orange. ‘Literature’ is a better approximation of the

speaker’s distribution than ‘Humanities’ (KL = .025 vs KL = .069).

Conjunction errors probably have other causes besides those we are suggesting, and making

a full case for the present proposal is beyond the scope of our paper.

We note that Dorst and Mandelkern (2021) present an account of the conjunction

fallacy that is closely related to ours. They review the relevant empirical literature, and

argue comprehensively that the pattern of people’s conjunction errors is highly consistent

with their accuracy-specificity trade-off model. Their arguments can also be used to

support our own proposal. To give just one example (adapted to fit the details of our

account), we predict that conjunction errors should substantially diminish when the

‘A and B’ means ‘A and not B’ (see Politzer and Noveck, 1991; Dulany and Hilton, 1991; Moro, 2009, for

discussion). This is a different proposal than ours—for example on Figure 19 the guess ‘Bank teller’

induces the listener to assign equal probability mass to both ‘Bank teller and feminist’ and ‘Bank teller and

not feminist’.
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question is presented in a frequency format. Suppose participants have to consider 100

people who fit Linda’s description, and are asked to estimate the proportion of these people

that are feminist bank tellers. This framing suggests that the relevant probability

distribution is over the number of people who are feminist bank tellers (whereas the

classical framing suggests that the relevant distribution is over Linda’s features). A helpful

guess in this context is one that is aligned with the speaker’s estimate of the frequency of

feminist bank tellers in the sample, and thus should be consistent with probability theory.

If you think for example that out of 100 people that fit Linda’s description, about 4 are

likely to be feminist bank tellers, then ‘4’ is a good guess. Indeed, frequency formats

substantially diminish the rate of conjunction errors (Hertwig & Gigerenzer, 1999).

Implications for the rationality of judgment under uncertainty

There is a sense in which our perspective on judgment errors like the conjunction

fallacy ‘rationalizes’ these errors: we suggest that these errors arise from the operation of a

well-designed system. We attribute the error to a mis-application of this cognitive system

outside of its proper domain. This mis-application is of course a mistake with potentially

costly consequences. The conjunction fallacy is for example observed even in contexts

where people have to make monetary bets on an outcome (Tversky & Kahneman, 1983;

Nilsson & Andersson, 2010; Erceg & Galić, 2014). In this context, betting more money on

A&B than A is clearly sub-optimal.

Scope of the work

Our argument is formulated at an abstract level—in David Marr’s terms, it belongs

to the computational level of analysis (Marr, 1982). We think that this abstraction is

valuable, helping us focus on very general constraints on the shape of probabilistic

reasoning. To re-iterate the core of our argument: Reasoning under uncertainty typically

involves assessing the probability of many possible outcomes—reasoners must represent a

distribution, rather than a single probability. As such, it makes sense that judgments about

uncertain events would be designed to encode information about this distribution. These
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considerations apply, in principle, to any agent that must reason under uncertainty and

create compressed representations of probability.

Verbal communication

At a less abstract level, one might be interested in how judgment under uncertainty

works in more specific contexts, like verbal communication. We think that our proposal

gives a useful starting point for thinking about these issues, although it does not provide a

complete account.

In our information-theoretic framework, a guess provides an encoding of a

distribution, which can then be decoded. In the context of communication a natural

interpretation is that the speaker is encoding his subjective probability distribution in an

utterance and the listener is doing the decoding. These kinds of dynamics can be

formalized in models of pragmatics. For example the Rational Speech Acts framework

models communication as recursive mindreading across a (virtual) hierarchy of speakers

and listeners (RSA; Goodman & Frank, 2016; Degen, 2023; Zaslavsky et al., 2021). There

is a deep connection between the RSA and information theory, as the RSA equations can

be derived from information-theoretic principles (Zaslavsky et al., 2021; Wang et al., 2020).

So, computational models of pragmatics like RSA can be seen as one possible

implementation of our more general information-theoretic proposal.

The insight we provide is that for models of pragmatics to successful capture the

way people talk about uncertainty, they will probably have to assume that the speaker’s

goal is to communicate his subjective probability distribution over the relevant facts or

outcomes of interest. Indeed, existing applications of RSA to probabilistic reasoning make

this assumption (e.g. Egré et al., 2023; Herbstritt & Franke, 2019; van Tiel et al., 2022).

To demonstrate the applicability of RSA to our phenomena of interest, we

implemented an RSA model for our task in Study 2; see Appendix. The model assumes

that the literal meaning of ‘probably X’ is about the probability of X (namely that Pr(X)

is above a certain threshold), but that the pragmatic speaker tries to communicate about
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his whole subjective probability distribution.27 We find that the model is able to give a

relatively good account of our data in Study 2, although its fit is not as good as that of our

compression model.

We also find that the RSA model is more complicated to implement than our more

abstract compression model, for example because it must represent distributions over

distributions. This complexity can be a drawback, showing the comparative usefulness of

our more abstract approach. At the same time, embracing that complexity will sometimes

be necessary to model some situations that go beyond the assumptions of our simpler

model. For example, speakers often aim to communicate their belief about a distribution,

rather than the distribution itself (as our model assumes). Consider a student answering a

teacher’s question. The student’s goal is not to change the teacher’s belief about the

correct answer, but to communicate something about his own beliefs.

Estimating the quality of a guess may also involve sophisticated causal inferences,

for instance about whether the speaker possesses a good internal model of the relevant

domain. Consider for instance the answer “8880 to 8885 meters” to the question “what is

the height of Mount Everest?” (correct answer: 8849 meters). If we interpret the guess as

conveying a probability distribution narrowly centered on 8882.5 (the interval’s midpoint),

the guess assigns negligible probability to the correct answer. As such, the model we use in

Study 4 would judge it a very bad guess. But it is tempting to say this is a good guess, for

example because it is manifestly non-random: the guess would be unlikely to be in the

correct ballpark if the speaker had absolutely no idea about the height of Mt Everest.

We have studied guesses in two different formats: disjunctions of possible outcomes

(Studies 1 to 3) and numerical intervals (Study 4). There are of course many other ways

27 The assumption about the literal meaning of ‘probably X’ follows proposals from, e.g., Yalcin, 2007;

Lassiter, 2010. We also make this choice to show that our key claim (that guesses ultimately are designed

to encode a distribution rather than a single probability) is in principle consistent with a different

assumption about the literal meaning of probability expressions.
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that people express their uncertainty. They use for example vagueness, as in ‘Around 30

people will show up at the party’ (Egré et al., 2023). They also modulate the level of

uncertainty in their guess, using words like may, must, possibly and likely (Herbstritt &

Franke, 2019; Yalcin, 2007; Lassiter, 2010). Future work should investigate the

applicability of our approach to these different formats, while integrating the insights of

existing accounts of the semantics of uncertainty expressions (e.g. Egré et al., 2023; Alpert

& Raiffa, 1982; Herbstritt & Franke, 2019; Yalcin, 2007; Lassiter, 2010; Dhami & Mandel,

2022; Meder et al., 2022; Kao et al., 2014; Budescu & Wallsten, 1995; Wallsten & Budescu,

1983; Budescu et al., 2009).

Computational cost

At an algorithmic level, computing the quality of a guess requires computing the

target probability distribution, which is in many cases intractable. So people might need to

approximate the distribution, using for example sampling-based methods (Zhu et al., 2020;

Vul et al., 2014; Bramley et al., 2017; Davis & Rehder, 2020) or avoid this computation

entirely and use heuristics.

Comparison with the Accuracy/specificity trade-off hypothesis

Researchers have proposed that good guesses strike a trade-off between accuracy

and specificity: they have a high probability but do not mention too many possible

outcomes (Yaniv & Foster, 1995; Dorst & Mandelkern, 2021; Skipper, 2023). Here we

provide the first (to our knowledge) empirical test of the formal model of the

accuracy-specificity trade-off introduced by Dorst and Mandelkern (2021, see Studies 1 and

2). We also replicate an experiment by Yaniv and Foster (1995) that investigates if people

prefer guesses that are accurate and specific. What are the implications of our results for

the trade-off hypothesis?

On one hand, our data show that the trade-off hypothesis is generally a good

descriptive account of people’s judgments. In Study 4, we replicate Yaniv and Foster’s

finding that their formal model tracks people’s intuitions closely. In Studies 1 and 2, Dorst
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and Mandelkern’s formal model provides a good account of some of the general trends in

the data, and in particular we find that many individual participants are best-fit by the

model.

On the other hand, our data also suggest that the trade-off hypothesis paints at

best an incomplete picture. In particular, the trade-off hypothesis predicts the

impossibility of a U-shaped pattern between guess size and guess quality: for example if a

short guess A is better than a longer guess B, then B should also be better than any longer

guess C. But we observe systematic violations of this principle in Studies 1 and 2. People

tend to exhibit U-shaped patterns of judgments, and they exhibit them in precisely those

contexts where our information-theoretic account predicts that they should.

If the trade-off hypothesis is viewed as a descriptive account, it is not necessarily in

tension with our computational-level theory. We expect that the function of guesses is to

efficiently encode the speaker’s subjective probability distribution, but the human mind is

probably not implementing a fully optimal solution to this problem. Instead, people might

use heuristics that provide a good enough approximation of that solution. It is possible

that one such heuristic is to try to make guesses that are both accurate and specific: in

general this strategy will lead to efficient communication of one’s probabilistic beliefs. As

such, our account can be seen as providing a rational explanation for why people might

(sometimes) optimize an accuracy-specificity trade-off.

Related phenomena and future directions

One of the primary motivations for our proposal is that Distribution-encoding makes

sense of many phenomena in probabilistic reasoning that defy explanation in terms of the

Probability-maximizing standard. People’s judgments might also diverge from

Probability-maximizing for other reasons. First and most obviously, this divergence might

sometimes be a symptom of genuine irrationality, or reflect the use of limited cognitive

resources. Second, people sometimes guess in order to collect information, as in

information-seeking games like Twenty Questions and Mastermind (Cheyette et al., 2023).
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In these contexts, guessing is equivalent to asking a question, and asking a question whose

answer you already know is generally a bad strategy, so you shouldn’t make

high-probability guesses.28 Third, guesses that have low-probability are often considered

impressive if successful, especially if we know something that others don’t. For example,

scientists often gain credit by making correct predictions that are surprising from the point

of view of other existing theories, rather than correct-but-obvious predictions (Villarreal

et al., 2023).

Our theory relies on pre-existing intuitions about what counts as a natural partition

of the space of possibilities. In the urn example we use in Studies 1 to 3, the natural

partition of the outcome space is {Red, Green, Yellow, Blue}. But if people viewed the

relevant contrast to be {Red, not Red}, then our theory would make different predictions,

for example judging that ‘Not Red’ is a better guess than ‘Red’ for the urn in Figure 3a.

One can think of the relevant partition as depending on an implicit ‘question under

discussion’, suggesting connections between our approach and work on the semantics of

questions (e.g. Koralus & Mascarenhas, 2013; Roberts, 2012).

Our modeling framework assumes a pre-existing, fixed set of constraints over the

guesses that speakers can make. An interesting avenue for future research is to model

agents that can choose at which level of precision to encode their probabilistic beliefs, and

must navigate a trade-off between the costs and benefits of high-fidelity encoding (Sims,

2016; Berger, 2003).

Finally, our model often recommends making guesses that seem in some sense

‘representative’ of the probability distribution to be encoded. The idea that people use

representativeness as a heuristic for probability judgment has a long history in cognitive

science (Kahneman & Frederick, 2002; Kahneman & Tversky, 1972). Our framework offers

28 Speculatively, the logic of question-asking could also explain why people tend to make interval guesses

that are 50% likely to contain the correct answer. When asking yes/no questions, it is typically optimal to

ask questions for which one is maximally uncertain.
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a possible computational explanation for the pull that representative outcomes exert on

probabilistic reasoning; future work could explore this possibility further.

Conclusion

To handle uncertainty about the world, the mind needs to represent probabilities.

Probabilistic reasoning typically involves representing the probability of not only one, but

many possible outcomes of an event: people must at some level represent probability

distributions. As such, a natural idea is that when we think and talk about uncertain facts

or events, we implicitly encode our subjective probability distribution over the relevant set

of possible outcomes. We show that this natural hypothesis can qualitatively and

quantitatively account for many aspects of judgment under uncertainty.
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Appendix

Listener model, studies 1-2

Denote the probability of an outcome not mentioned in the guess as p. Then the

probability of an outcome mentioned in the guess is γp. Given that the probabilities of all

possible outcomes must sum to 1, we have:

ngγp + n¬gp = 1

where ng is the number of possible outcomes mentioned in the guess, and n¬g the

number of possible outcomes not mentioned in the guess. It follows that the probability of

an outcome unmentioned in the guess is:

p = 1
n¬g + γng

from which we also get that the probability of an outcome mentioned in the guess is:

γp = γ

n¬g + γng

Proof that the trade-off model cannot predict U-shaped patterns

In Studies 1 and 2, we find that people’s judgments sometimes exhibit a ‘U-shaped’

relationship between guess size and quality. For example, in Study 2 many more

participants make a size-1 or size-3 than a size-2 guess when looking at an urn with profile

[5,3,3,1]. The question arises whether the trade-off model could in principle account for

this phenomenon. Here we show that it cannot.

Of course the model could trivially predict a U-shaped pattern if we consider

guesses that are manifestly irrational: for example one can show that a size-1 and a size-3

guess are both better than a size-2 guess if the size-2 guess only mentions the two least

frequent colors in the urn. As such we restrict our analysis to ‘Pareto-optimal’ guesses. A

guess is optimal in that sense if it is impossible to construct a guess that is more specific
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but not less accurate than the current guess, or more accurate but not less specific. In the

context of our urns-and-balls paradigm, a guess is Pareto-optimal if there is no other color

in the current urn that is strictly more frequent than one of the colors mentioned in the

guess. (Study 1 only featured Pareto-optimal guesses, and 98% of the guesses produced in

Study 2 were Pareto-optimal.)

Remember that the trade-off model computes the value of a guess as:

V (g) = P (g)JS(g) (6)

Where the specificity S(g) is the proportion of colors in the urn that are not

mentioned in g. Consider three Pareto-optimal guesses a, b, c, where c mentions more

colors than b and b mentions more colors than a. We will show that if V (a) > V (b), then

V (b) > V (c). For example, if a size-1 guess is better than a size-2 guess, then a size-2 guess

is necessarily better than a size-3 guess.

Proof. For conciseness we write Px = Pr(x) and Sx = S(x). It will be useful to

denote the difference in probability and specificity between guess a and guess b as follows:

∆P = Pb − Pa (13)

∆S = Sb − Sa (14)

We start with the assumption (to be relaxed later) that there is a gap of size 1

between the successive guesses, i.e. that a, b and c mention n, n + 1 and n + 2 colors

respectively. It follows that the difference in specificity between them is equal:

Sc − Sb = Sb − Sa = ∆S. Given this assumption, V (c) is maximized if the probability

increase in going from b to c is the same as the probability increase in going from a to b,

i.e. if Pc − Pb = Pb − Pa = ∆P . This is because Pareto-optimality implies that Pc − Pb

cannot exceed ∆P .29 Therefore we assume that Pc − Pb = Pb − Pa = ∆P : If we can show

29 Pareto-optimality implies that the colors in b are more or equally frequent as the colors not in b.
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that V (b) > V (c) holds under this assumption, then it holds for all other possible values of

Pc − Pb.

The inequality V (b) > V (c) is equivalent to:

PbJ
Sb > PcJ

Sc (15)

i.e.:

(Pa + ∆P )JSa+∆S > (Pa + 2∆P )JSa+2∆S (16)

i.e.:

Pa + ∆P

Pa + 2∆P
>

JSa+2∆S

JSa+∆S
(17)

i.e.:

Pa + ∆P

Pa + 2∆P
> J∆S (18)

On the other hand, we already know, from V (a) > V (b), that:

PaJSa > PbJ
Sb (19)

i.e.:

PaJSa > (Pa + ∆P )JSa+∆S (20)

i.e.:

Pa

Pa + ∆P
> J∆S (21)

Therefore the extra color in c is either as frequent or less frequent than the colors in b, so adding that color

to the guess can not result in a gain in probability greater than ∆P .
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Putting Equations 18 and 21 together, we realize that V (b) > V (c) is true as long as
Pa+∆P
Pa+2∆P

> Pa

Pa+∆P
, which the quotient rule of calculus shows to be always true.

We have just shown that if a, b and c mention n, n + 1 and n + 2 colors, then

V (a) > V (b) implies V (b) > V (c). We now show that the result generalizes to any (a, b, c)

triplet of Pareto-optimal guesses where a has more colors than b and b more colors than c.

Note first that if a guess with n colors has higher value than a guess with n + 1

colors, then it follows from the result derived above (by induction) that it has higher value

than all guesses with n + 2 or more colors.

Now we show that V (a) > V (b) implies V (b) > V (c). It follows from V (a) > V (b)

that every Pareto-optimal guess whose size is between a and b must have higher value than

b.30 Therefore the Pareto-optimal guess gb−1 whose size is 1 less than the size of b has

V (gb−1) > V (b). It follows (from the result in the paragraph above) that every guess of size

greater than b has lower value than b, so V (b) > V (c).

RSA model in Study 2

We consider a model within the Rational Speech Act framework (RSA; Goodman &

Frank, 2016; Degen, 2023; Franke & Jäger, 2016), inspired by an application of the

framework to judgments of probability by Herbstritt and Franke (2019). The model relies

on a threshold semantics for probability statements: the literal meaning of “probably X” is

Pr(X) ≥ θ, where the threshold θ is a free parameter. The literal meaning of “the ball will

probably be Red or Green” is for example Pr(Red ∨ Green) ≥ θ. The model assumes that

the listener interprets the guess according to its literal meaning, but that the speaker makes

the guess that gets the listener to infer a probability distribution that is as close as possible

to the speaker’s subjective probability distribution over possible outcomes. In that respect,

30 Any other pattern would violate the result we derived earlier, because it would imply that there is a

local U-turn somewhere along a and b. I.e. there would have to be three successive guesses g1, g2, g3 (with

size n, n + 1 and n + 2) somewhere between a and b with V (g1) > V (g2) and V (g2) ≤ V (g3), which we saw

is impossible.
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the RSA model is quite close in spirit to the compression model, and we see it essentially

as another potential implementation of the general idea underlying our rational analysis.

When hearing the guess “the outcome will probably be X”, the listener concludes

that the speaker’s distribution is such that Pr(X) > θ, and uses this information to update

her prior belief about the speaker’s distribution, via Bayes’ rule. The listener’s prior belief

about the speaker’s distribution is a distribution over distributions (i.e. a

meta-distribution). That is, the speaker might think that the frequencies of colors in the

box are [Red: 5, Green: 3, Blue: 3, Yellow: 1] or he might think that they are [Red: 2,

Green, 2, Blue: 2, Yellow: 6], or any other combination.

We assume that the listener has a flat prior over distributions, such that every

possible combination of colors in the urn is equally likely (subject to the constraints that

there are at least 1 ball of each color). When the listener hears the guess, she simply

eliminates from her meta-distribution all those that are incompatible with the guess, i.e.

those distributions where Pr(X) < θ. For example if the guess is “probably Red or Green”,

then the listener eliminates distributions where Pr(Red) + Pr(Green) < θ.

Finally, the listener computes her posterior belief over the probability that a

randomly drawn ball would be of a certain color by marginalizing over all the remaining

distributions in her meta-distribution.

The speaker can anticipate the inference that the listener will draw from a guess,

and computes the quality of a guess as inversely related to the K-L divergence of the

distribution inferred by the listener relative to the speaker’s subjective probability

distribution (Equation 5). Like the other models we consider in Study 2, the RSA model

assumes that the speaker’s distribution might be subject to slight distortions (Equation 4)

and that the probability of guess production is determined by a softmax function

(Equation 7).
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Results

We fit the model to the human data in Study 2. We obtain α = 1.96, β = 14.93,

and θ = .75 as best-fitting parameters. The RSA model has a good fit to the data : its

predictions are correlated with human choice proportions at r(193) = .907, p < .001 (see

Figure A3) and its AIC is 2115.

The model is however unable to explain some of the subtle features of the data.

Similar to the trade-off model, it predicts that there is one optimal guess size for a given

urn, and that the quality of a guess diminishes monotonically as a function of its distance

from the optimal guess size—as such it cannot account for the U-shaped patterns in the

data. However, we anticipate that the model might be able to capture these patterns if we

allowed higher levels of recursive mindreading—for example by letting a Level-2 speaker

anticipate the inferences of a pragmatic listener. We leave an exhaustive exploration of

these possibilities for future research.

Threshold model in Study 2

According to the threshold model, participants include a color in a guess if the

number of balls of that color is at or above a given threshold θ. For example, if θ = 2,

people include in their guess all colors that are present in at least two balls in the current

urn – so, for the urn profile [6,3,2,1], people include the three most frequent colors in their

guess (because there are three colors with 2 balls or more), but they only include one color

for the urn profile [9,1,1,1].

To make the model stochastic, we assume that the quality of a guess is 1 if the guess

includes all and only colors with θ balls or more, and 1
1+L

otherwise, where L is the number

of colors that are either included in the guess whereas they shouldn’t be (because

ncolor < θ), or not included in the guess whereas they should be (because ncolor ≥ θ). The

probability of each guess is then given by passing these values to a soft-max function, as

specified in the main text (Equation 7).
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Figures for alternative models, Study 2

Figure A1

Study 2: Proportion of human participants making a given guess, and trade-off model

probability for that guess, as a function of urn profile and guess size, for guesses lying on

the Pareto frontier. Note: for some urn profiles, several different guesses can correspond to

the same guess size. When this is the case, we compute the average choice probability

across all these guesses. Note that probabilities do not necessarily sum to 1, because guesses

lying outside the Pareto frontier are not represented.
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Figure A2

Study 2: Proportion of human participants making a given guess, and threshold model

probability for that guess, as a function of urn profile and guess size, for guesses lying on

the Pareto frontier. Note: for some urn profiles, several different guesses can correspond to

the same guess size. When this is the case, we compute the average choice probability

across all these guesses. Note that probabilities do not necessarily sum to 1, because guesses

lying outside the Pareto frontier are not represented.
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Figure A3

Study 2: Proportion of human participants making a given guess, and RSA model

probability for that guess, as a function of urn profile and guess size, for guesses lying on

the Pareto frontier. Note: for some urn profiles, several different guesses can correspond to

the same guess size. When this is the case, we compute the average choice probability

across all these guesses. Note that probabilities do not necessarily sum to 1, because guesses

lying outside the Pareto frontier are not represented.

List of trials, Study 3
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Table A.1

List of trials, along with predictions of the pragmatic listener model (calibrated with

empirically-derived likelihoods) and mean participant ratings, Study 3. Number lists

represent the profile of an urn: for example, an urn labelled [9,1,1,1] has 9 balls of one

color, and one ball each of the other colors. Note that which box was labeled as ‘A’ or ‘B’

was counter-balanced across participants.

urn A urn B guess

size

Pr(B), empirical

model

Pr(B), mean human

rating

3 3 3 3 4 3 3 2 1 0.853907135 77.41666667

3 3 3 3 4 4 2 2 1 0.71043771 69.33333333

3 3 3 3 5 3 2 2 1 0.917860554 76.22222222

6 2 2 2 4 4 3 1 1 0.001182383 27.94444444

6 4 1 1 4 4 2 2 1 0.193815064 16.77777778

7 3 1 1 4 3 3 2 1 0.235956814 10.05555556

8 2 1 1 9 1 1 1 1 0.529881839 71.61111111

3 3 3 3 5 4 2 1 2 0.979972896 85.52777778

3 3 3 3 8 2 1 1 2 0.894944708 73.33333333

4 4 3 1 8 2 1 1 2 0.225877193 44.08333333

5 3 2 2 4 4 3 1 2 0.455965242 43.11111111

6 4 1 1 3 3 3 3 2 0.024111675 13.02777778

6 4 1 1 5 3 3 1 2 0.157721796 20.97222222

8 2 1 1 4 4 3 1 2 0.774122807 46.77777778

4 3 3 2 5 3 2 2 3 0.002275313 38.97222222

4 4 2 2 5 3 2 2 3 0.5 59.75

4 4 3 1 6 2 2 2 3 0.039221469 31.41666667

6 3 2 1 4 4 2 2 3 0.020460358 36.88888889

Continued on next page
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Table A.1 – continued from previous page

urn A urn B guess

size

empirical model mean human rating

6 4 1 1 3 3 3 3 3 0.943262411 47.94444444

6 4 1 1 5 4 2 1 3 0.5 68.86111111

8 2 1 1 3 3 3 3 3 0.943262411 57.11111111

4 4 2 2 9 1 1 1 4 0.020460358 22.19444444

5 4 2 1 5 3 3 1 4 0.5 48.80555556

6 2 2 2 6 4 1 1 4 0.020460358 37.86111111

6 2 2 2 9 1 1 1 4 0.020460358 23.41666667

6 3 2 1 3 3 3 3 4 0.99848082 67.22222222

6 3 2 1 5 3 3 1 4 0.5 51.91666667

9 1 1 1 8 2 1 1 4 0.5 61.83333333
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Figure A4

Detailed choice data for Study 3, along with predictions of the pragmatic listener model with

empirically-derived likelihood. Grey dots represent individual ratings, blue circles represent

mean human ratings, and purple squares are model predictions. Error bars represent the

standard error of the mean. GS: guess size; A: profile for urn A; B: profile for urn B.

Original data from Yaniv & Foster (1995)

Unfortunately, the original data for Yaniv and Foster (1995) have been lost (Yaniv,

personal communication), but we can analyze data from the sample items displayed in the

paper (reproduced in Table A.2). Specifically, there are available data for three items from

the preliminary experiment (N=20), and for five items from Experiment 3 (N=30). For

each item, we have the guesses made by assistants A and B, the correct answer, as well as

the proportion of participants who picked assistant A as the best. We analyzed data from

these eight items together, by finding the best-fitting values of k (the scaling constant that
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Figure A5

Proportion of participants preferring the guess from assistant A, as a function of the

compression model’s preference for A, in items from Yaniv and Foster (1995) for which

data were available. Error bars represent standard errors. Regression line is shown in blue.

transforms the width of the guess into a standard deviation) and β (the temperature

parameter) for the compression model. We find that for best-fitting values k = 1, β = 1.3,

the correlation between the preference of the compression model and participants’ choices

is r(6) = .96, p < .001, see Figure A5. We also find that Yaniv & Foster’s original

accuracy-specificity trade-off model has a similarly good fit to these data (r(6) = .98, p <

.001).
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