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Abstract

For decades, social psychologists have wondered about the
cognitive foundations of social stereotype use. Arguments
have generally centred either resource constraints, framing
stereotypes as ‘energy-saving devices’, or ‘fit’, framing stereo-
types as tools to represent real structure in the social environ-
ment that sometimes go awry. These resource-based and fit-
based accounts have typically been presented as being in op-
position to one another. In this paper, we seek to show that both
are compatible under an information bottleneck model of agent
representation. Through a simple simulation experiment, we
demonstrate how stereotype use emerges in resource-rational
representations as a function of both capacity constraints and
the structure of the social environment. We then use the same
framework to consider a possible explanation for the outgroup
homogeneity bias in terms of limited cognitive capacity.
Keywords: Social cognition; Resource rationality; Informa-
tion theory; Rate-distortion theory

Introduction
Despite our best efforts, the practice of stereotyping others
based on group identity remains a pervasive feature of hu-
man social cognition. Given both the prevalence and often
negative consequences of social stereotyping, it seems that
a unified account of why such stereotypes are so hard to re-
sist could prove very valuable. However, there remains dis-
agreement on the cognitive basis of social stereotype use.
Two main perspectives have been advanced in the literature.
The ‘resource-based’ account has a long history (Lippmann,
1922; Allport, 1954; Bodenhausen & Lichtenstein, 1987;
Macrae et al., 1994), and holds that stereotypes are employed
as ‘energy-saving devices’ motivated by a need to reduce in-
formation processing in complex environments. This account
rests on the argument that stereotyping is a less resource-
intensive process than individuation (Macrae et al., 1994),
and appears to be supported by empirical research finding
that stereotype usage increases under higher cognitive load
(Bodenhausen & Lichtenstein, 1987; Stangor & Duan, 1991;
Pratto & Bargh, 1991; Macrae et al., 1993).

Others have pushed back against the resource-based ac-
count, suggesting instead that people’s usage of categorical
representations is determined more by the extent to which
they ‘fit’ social reality, in the context of the observer’s par-
ticular goal(s) (Oakes & Turner, 1990; Nolan et al., 1999).
Proponents of this position argue that the mere fact of a rep-
resentation being categorical in nature does not inevitably en-
tail a distortion of social reality. Following Bruner (1957)

and Neisser (1987), they may also argue that it is mislead-
ing to view categorisation solely through the lens of infor-
mation loss; rather, categories can increase the availability
of the information most relevant to a decision-maker. The
‘fit-based’ account is perhaps best summarised by Oakes &
Turner (1990) as the idea that social stereotype use operates
in “functional interaction with context rather than in a contex-
tually random manner based on purely internal, information-
processing demands and limitations”.

In this paper, we argue that rather than being in opposi-
tion to one another, resource-based and fit-based accounts
of social stereotype use are in fact compatible under a sin-
gle model. We suggest that both these positions contain an
element of truth; i.e. that social stereotypes are motivated
by capacity constraints, but can also serve to represent real
structure in the environment, while being influenced by an
observer’s particular decision-making goals.

To do this, we adopt the perspective of resource-rational
analysis, a conceptual framework which has seen growing
adoption within the cognitive sciences (Lieder & Griffiths,
2020; Bhui et al., 2021; Icard, 2023), and seeks to under-
stand cognitive systems as embodying the optimal alloca-
tion of limited computational resources to the information-
processing problems faced in their environment. Within
this high-level approach, there are many possible ways
to formalise resource limitations. We adopt an explicitly
information-theoretic perspective, modelling a limit on cog-
nitive resources as an upper bound on the amount of infor-
mation an observer is able to extract from their environment.
The advantage of this framing is that it remains agnostic as
to particular implementation or substrate details, permitting
interpretation in terms of various constructs such as mem-
ory or inference capacity (Icard, 2018). Information theory
has previously been used to model resource-rational cogni-
tion across many domains (Wei & Stocker, 2015; Sims, 2016;
Binz & Schulz, 2022; Arumugam et al., 2024; Lai & Gersh-
man, 2024; Icard & Goodman, 2015; Kinney & Lombrozo,
2024; Zaslavsky et al., 2021; Futrell, 2023; Cheyette et al.,
2024)—of particular interest to the present work, these prin-
ciples have recently been applied to studying both catego-
rization (Martı́nez, 2024; Imel & Zaslavsky, 2024) and social
representation (Taylor-Davies & Lucas, 2023). In this paper,
we draw on these same principles to study the use of social
stereotypes.
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Figure 1: An illustration of our choice prediction task. The observer must predict future fruit choices made by a population of
actors, given input data (⃗x) in the form of individual choice histories (⃗e) and discrete group identity labels (g). As a result of
limited cognitive capacity, the observer first converts input data X⃗ into compressed representations Z via encoder q(z|⃗x), before
using Z to make predictions via decoder q(y|z).

We consider the general setting of a social environment
where agents are organised into non-overlapping groups,
which influence but do not entirely determine their individ-
ual attributes. An observer is given access to both some in-
dividuating evidence and a categorical group label for each
agent in the environment, and seeks to predict their future
behaviour under limited cognitive capacity 1. In our first sim-
ulation experiment, we use this setting to argue that social
stereotype use is motivated by a combination of both resource
constraints and environment structure, rather than respond-
ing to either one alone. We then show that under minimal
assumptions the same framework produces systematic under-
estimates of the variability within less-encountered groups,
suggesting a role of capacity limits in the phenomenon of out-
group homogeneity bias.

Task setup
To illustrate our modelling approach, we use a simple predic-
tion task, in which an observer tries to predict the choices Y
made by a population of actors between a selection of dif-
ferent fruits. Each actor’s fruit choices are (noisily) guided
by a vector of preference weights W⃗ , which are influenced by
their social group identity G. The observer has access to input
data X⃗ = [E⃗,G] for each actor, where E⃗ is some individuating
evidence of the actor’s fruit preferences (here a fixed-length
history of previous choices). From X⃗ , the observer will pro-
duce compressed representations Z via a stochastic encoding
q(z|⃗x), and then use these to predict subsequent fruit choices
Y by q(y|z). In detail, the environment is described by the fol-
lowing generative model. First, for each group g we sample a

1Since our focus is on modelling stereotype usage, and not
stereotype formation, we assume the observer also knows the dis-
tribution of individual properties associated with each group—
extending the framework to account for both processes is left for
future work.

mean preference vector:

µ⃗g ∼ N (0,Σ) (1)

Then for each agent i, we first assign them to a group (Eq. 2),
and then sample their preferences according to their group
mean (Eq. 3). Each agent’s choice history and future choices
are then distributed according to Eqs. 4 and 5:

Gi ∼ Uniform(K) (2)

W⃗i ∼ N (µ⃗g,ρΣ) (3)

E⃗i ∼ Multinomial
(
NE ,softmax(w⃗i,βchoice)

)
(4)

Yi ∼ Categorical
(
softmax(w⃗i,βchoice)

)
(5)

where K is the number of groups, Σ is the covariance of the
base preference distribution, µ⃗g is the mean of the preference
distribution for group g, and ρ is the ratio between intra-
and intergroup variance (see also Equation 11). NE is the
number of previous fruit choices appearing in E⃗, and βchoice
is the temperature parameter that determines how noisy ac-
tors’ choices are2. Unless otherwise specified, we use (K =
3, NE = 15, βchoice = 0.25) throughout our simulations.

Modelling framework
The observer’s goal is to find a stochastic encoding q(z|⃗x) that
is maximally useful for predicting the actors’ future choices
Y , given a particular cognitive capacity limit. Formally, this
describes an information bottleneck (IB) problem (Tishby
et al., 1999), a framework which is closely related to rate-
distortion theory (Shannon, 1948; Berger, 2003) and has been
applied in fields such as deep learning (Tishby & Zaslavsky,

2The softmax function is a common response model for stochas-
tic choice. Given a vector of preferences w⃗ = [w1,w2,w3], the agent
chooses option i with probability p(i) ∝ exp(wi/βchoice).



2015; Alemi et al., 2017), neuroscience (Palmer et al., 2015;
Rubin et al., 2016), computational linguistics (Mollica, 2024)
and concept learning (Imel & Zaslavsky, 2024). In an IB
problem, we operationalise both predictive utility and capac-
ity via mutual information, with the optimal encoder q∗ given
by:

q∗ = argmax
q

I(Y ;Z) subject to I(X ;Z)≤C (6)

I.e., given a ceiling on how much information Z can extract
from X , the optimal encoding q∗ is one which preserves the
most information about Y . The objective in Equation (6)
can be approximately solved using a variant of the Blahut-
Arimoto algorithm (Blahut, 1972; Arimoto, 1972; Tishby et
al., 1999), which iterates the following updates until conver-
gence:

qt+1(z|⃗x) ∝ pt(z)exp
(
−βd(⃗x,z)

)
(7)

pt+1(z) = ∑
x⃗

qt+1(z|⃗x)p(⃗x) (8)

qt+1(y|z) = ∑
x⃗

p(y|⃗x)qt+1(⃗x|z) (9)

with the distortion function d(⃗x,z) taken as the Kullback-
Leibler divergence between p(y|⃗x) and q(y|z):

d(⃗x,z) = DKL
[
p(y|⃗x)||q(y|z)

]
= ∑

y
p(y|⃗x) log

p(y|⃗x)
q(y|z)

(10)

In essence, these equations can be understood as saying
“iteratively update the encoder so that q(z|⃗x) is decreased to
the extent that using z in place of x⃗ leads to prediction error”.
The β parameter that appears in Equation (7) controls how
the optimisation procedure trades off between rate and distor-
tion (i.e. between simplicity and informativeness), and can be
viewed as a Lagrange multiplier for the capacity constraint C
in Equation (6)—at low β we obtain encoding policies that
extract little information from X⃗ ; at high β, we obtain en-
coders that preserve much more of the information in X⃗ .

Before we proceed further, it is worth briefly clarifying
how we wish to interpret the IB account. Under the model
given here, social stereotyping might appear identical to any
more general process of resource-motivated categorisation.
Of course, this ignores the crucial difference that people can
perceive themselves as members of social categories. For
simplicity, this dimension is absent from our simplistic ‘ideal
observer’ task design—but will doubtless have an impact, and
should be considered in future work (alongside other non-
epistemic motivations for stereotype use).

Simulation 1
Code to reproduce our simulations is available here.

Let us now use the task and framework outlined above
to investigate how stereotyped representations emerge from
the combination of social structure and capacity constraints.
Given an optimal encoding q∗ found for a particular capac-
ity limit C, we can determine the extent to which q∗ relies

Figure 2: The effect of ρ (the ratio between intragroup and in-
tergroup preference variation) on the group-conditioned fruit
choice distribution p(y|g) ∝ ∑w⃗ p(y|w⃗)p(w⃗|g) for one exam-
ple instantiation of the task environment described in Equa-
tions 1-5 (and with βchoice = 0.25), showing that the utility of
knowing G for predicting actors’ choice behaviour decreases
as we increase ρ.

on stereotyping by computing the relative mutual information
between the learned representations Z and the group labels G
vs the individuating evidence E⃗. Our hypothesis is that this
will be jointly determined by both the representational capac-
ity afforded to the encoder, and the stereotype ‘fit’, i.e. the
extent to which G is predictive of an actor’s food choices.
Intuitively, the extent to which group identity is predictive
of an individual’s choice behaviour depends on two factors:
the variance in preferences between groups and the variance
in preferences within groups. Group identity is most predic-
tive of individual choice behaviour when intergroup variance
is high and intragroup variance is low; it is least predictive
when intergroup variance is low and intragroup high. The
parameter ρ introduced in Eq. 3 corresponds to the ratio:

ρ =
intragroup variance
intergroup variance

(11)

with knowledge of the actor’s group identity becoming less
informative as ρ increases (illustrated in Fig. 2 for a single
example setting of the group means {µ⃗g}).

Our key prediction is that the amount of stereotype use by
the optimal encoding q∗ will increase as both C and ρ de-
crease. To test this, we use the Blahut-Arimoto algorithm
to find optimal encoding schemes for the task environment
described in Eqs. 1-5, for various values of both C and ρ.
Specifically, for each value of ρ we sample 50 different in-
stances of the task environment (corresponding to different
random seeds). For each instance, we then compute q∗ for
a range of C values3, using the technique of reverse deter-
ministic annealing (Zaslavsky & Tishby, 2019) to minimise

3Practically, we actually find encoders for different values of β,
and then compute the normalised mutual information I(X⃗ ;Z)/H(X⃗)
to determine corresponding values of C ∈ [0,1].

https://github.com/maxtaylordavies/ib-stereotyping


Figure 3: Normalised information curve obtained by running
the Blahut-Arimoto algorithm (Equations 7-9) with different
values of β for a single example instantiation of the task en-
vironment with ρ = 1.0.

the risk of convergence to local minima. For each learned
encoding q∗, we then compute the mutual information terms
I(X⃗ ;Z), I(Y ;Z), I(G;Z) and I(E⃗;Z).

As a preliminary test of our experimental setup, we plot the
mutual information I(Y ;Z) as a function of I(X⃗ ;Z) (the ‘in-
formation curve’), for a single value of ρ = 1.0. If the algo-
rithm works as expected, we should see a Pareto relationship
between the two quantities—Fig. 3 shows that we do indeed
find this, indicating that the optimisation procedure given in
Eqs. 7-9 is converging properly.

Next, we test our key hypothesis—that the extent to which
the optimal encoding q∗ relies on stereotyping will depend on
both the capacity of the observer (C) and the ratio between in-
tragroup and intergroup preference variance (ρ). Fig. 4 shows
how the relative amounts of information preserved by Z about
the group label G and individual choice history E⃗ vary with
both C and ρ. Fig. 5 offers a condensed view of the same data,
showing the amount of stereotyping I(G;Z)− I(E⃗;Z) directly
as a function of ρ and C.

We find that both parameters have a meaningful influence
on the amount of stereotyping. Interestingly, stereotyping is
maximised for ρ → 0 and moderate C. To see why, we can
consider the low-ρ case (e.g. ρ = 0.01). At very low capacity,
the observer can extract little information about either group
labels or individuating inputs. As capacity is increased, it
is initially allocated mainly to extracting information about
the cheaper-to-represent G (which at low ρ is usefully predic-
tive of Y ), with a comparable amount of information extracted
about E⃗ only once C is high enough that there is ‘spare’ ca-
pacity to do so. In sum, our model predicts that stereotyping
should occur when knowledge of group membership is highly
predictive of behaviour (consistent with fit-based accounts),
and in conditions where observers face some cognitive ca-
pacity constraints (consistent with resource-based accounts).

Simulation 2

In our first simulation experiment, we showed that the in-
formation bottleneck approach can unify the high-level per-
spectives of both resource-based and fit-based accounts of
social stereotype use under a single model. We now investi-
gate whether it can also capture the phenomenon of outgroup
homogeneity bias, where people perceive members of an out-
group as being less differentiated than their ingroup (Quat-
trone & Jones, 1980; Ostrom & Sedikides, 1992; Judd et al.,
2005). While a multitude of theories have been offered to ex-
plain this effect, we highlight just two here. An early account
from Ostrom et al. (1993) focuses on the ‘differential encod-
ing’ of stimulus information. They suggest that information
about ingroup and outgroup members is stored using differ-
ent categorical structures, based on individual person cate-
gories or stereotypical attributes, respectively. More recently,
Konovalova & Le Mens (2020) have advanced a sampling-
based explanation under which the outgroup homogeneity
bias arises simply from the structure of the environment,
without any need for differential processing. They suggest
that people’s perceptions of group variability are based on the
sample variance over their encounters with group members—
since sample variance tends to increase with sample size, the
assumption that people encounter outgroup members less fre-
quently than ingroup members is then sufficient to produce an
outgroup homogeity bias.

We draw on both of these theories to argue that the out-
group homogeneity bias arises from a combination of en-
vironment structure and information processing—emerging
as a consequence of resource-rational agent representation
in environments where outgroup members are encountered
less frequently than ingroup members. Like Konovalova &
Le Mens (2020), we suggest that perceptions of outgroup
homogeneity result from differences in sample variance—
however, we consider the sample variance not over ‘true’ ob-
servations of group members but rather over reconstructed
attributes from compressed representations. Importantly, this
difference in sample variance is driven not by differences in
sample size, but from how much information Z preserves
about attributes of ingroup vs outgroup members. In this way,
our account is one of differential encoding, like (Ostrom et
al., 1993)—but with the crucial point that the encoding pro-
cess is shaped directly by the structure of the social environ-
ment. To see how this follows, consider an observer with
fixed capacity C, in an environment where some inputs are
encountered frequently (high p(⃗x)) and others are rare (low
p(⃗x)). If the observer is motivated to maximise the expected
usefulness of their representations Z (i.e. minimise ⟨d(⃗x,z)⟩),
they should intuitively allocate a larger share of C to repre-
senting the more frequent inputs, resulting in coarser repre-
sentations of the rarer inputs. If we apply this general argu-
ment to a social setting where the observer interacts primar-
ily with their ingroup, we should expect them to represent
outgroup members in less detail—producing perceptions that
underestimate their heterogeneity.



Figure 4: Information extracted by the optimal encoder about group labels G and individuating evidence E as a function of
observer capacity C for selected values of the variance ratio ρ. H(∗) denotes the Shannon entropy of *. Shaded areas represent
bootstrapped 95% confidence intervals over 50 seeds.

Figure 5: Relative difference in group vs individuating infor-
mation extracted I(Z;G)/H(G)− I(Z;E)/H(E) as a function
of both cognitive capacity C and variance ratio ρ, averaged
over 50 seeds. H(∗) denotes the Shannon entropy of *.

To test this idea, we consider the same choice prediction
setting as in Simulation 1, but rather than three agent groups,
we now just have two—an ingroup and an outgroup—with
non-uniform probabilities p(g). For different values of p(g =
outgroup) ≤ p(g = ingroup), we use the algorithm given in
Eqs. 7-9 to determine the optimal encoder q∗ for different
levels of cognitive capacity C. Since for this setting we’re not
interested in the variance ratio ρ, we fix the group means at
µingroup = [1,0,−1], µoutgroup = [−1,0,1] and the intragroup
variance at Σ = I3 (i.e. both the ingroup and outgroup always
have the same true variability).

For each optimised encoder q∗, we first sample for both
groups an equally-sized set of 104 representative inputs
{⃗x}g ∼ p(⃗x|g), and then encode them to produce compressed
representations {z}g ∼ q∗(z|⃗x). From each z, we then esti-
mate the underlying latent fruit preferences w⃗|z following the

Bayes-optimal decoder

ŵ = E
[
w⃗|z

]
= ∑

x⃗,w⃗
w⃗p(w⃗|⃗x)q(⃗x|z) (12)

to produce {ŵ}g. We then use this to estimate the group vari-
ance as Varq∗(ŵ|g) = tr(Σg) where Σg is the sample covari-
ance of {ŵ}g. Given a large enough sample, Varq∗(ŵ|g) tells
us the variance in preferences that the observer ascribes to
group g, assuming they use q∗ to process information about
all actors in their environment. We compute estimated vari-
ances for both groups, and then take the level of outgroup
homogeneity bias in encoder q∗ as

OHB =
Varq∗(ŵ|g = ingroup)

Varq∗(ŵ|g = outgroup)
(13)

Fig. 6 shows this measure recorded for different values of
p(outgroup) and encoder capacity C. We find an interest-
ing pattern. For all p(outgroup) < 0.5, the observed bias
initially increases sharply with C, as q∗ goes from encod-
ing both agent groups with minimal detail to encoding the in-
group with higher fidelity. As we continue to increase C, the
bias decays towards as a constant level as more information
is encoded about outgroup individuals. While the basic shape
of the curve is the same for all p(outgroup) < 0.5, we see a
systematic effect of p(outgroup) on the maximum observed
bias. Finally, for p(outgroup) = 0.5 we see no bias emerge
regardless of capacity, as we would expect. Fig. 7 shows the
same results in heatmap form—we see that the outgroup ho-
mogeneity bias is maximised as we decrease p(outgroup) at
moderately low (but not minimal) C.

Discussion
In this paper, we used the information bottleneck framework
to study the phenomenon of social stereotype use in a simple



Figure 6: Outgroup homogeneity bias exhibited by the optimal encoder, Varq∗(ŵ|g = ingroup)/Varq∗(ŵ|g = outgroup) as a
function of observer capacity for different values of p(g = outgroup). Shaded areas represent bootstrapped 95% confidence
intervals over 50 seeds.

Figure 7: Outgroup homogeneity bias exhibited by the op-
timal encoder as a function of capaacity C and p(g =
outgroup), averaged over 50 seeds.

choice prediction setting. In our first simulation experiment,
we demonstrated that the degree to which a resource-rational
observer relies on group labels over individuating informa-
tion depends on both their cognitive capacity and the ratio
between inter-group and intra-group variance. In our sec-
ond simulation experiment, we showed that under minimal
assumptions the same framework can be used to account for
the outgroup homogeneity bias. Taken together, our results
highlight the combined role of resource constraints and social
environment structure in determining the extent to which a
rational observer represents other agents categorically. While
the framework we use casts the representational task in terms
of an optimisation problem, it is important to note that we
are not claiming that people solve Equation (6) themselves
in each social environment or task context. Rather, the per-
spective taken in resource-rational analysis is that the prob-
lem has been approximately solved over time by evolution-
ary, developmental or learning processes, with observers sim-

ply executing the resulting policy (Lieder & Griffiths, 2020;
Icard, 2023). In this way, the account we present can also be
seen as an application of ecological rationality (Gigerenzer &
Brighton, 2009).

We finish by outlining some limitations of the current
work. Firstly, our ‘experiments’ were purely simulation-
based, with no behavioural component. While direct compar-
isons to human behaviour are complicated by the difficulty
of manipulating participants’ cognitive capacity, future work
could draw closer connections between the predictions of the
IB model and the results of the cognitive load experiments
referenced in the introduction. Another limitation is our use
of a very simplistic social structure, with exhaustive and mu-
tually exclusive groups. Real social environments are rarely
this straightforward—group boundaries are often fuzzy, and
people don’t just have a single social identity that is static
over time and across different contexts. Relatedly, real ob-
servers don’t typically have direct access to others’ ‘true’ so-
cial identity; rather people express various noisy cues that we
use to make inferences about the social groups to which they
might belong. Future work that incorporates these aspects as
part of a more realistic task setting would be valuable. Fi-
nally, by focusing on the perspective of an idealised outside
observer, the view we present here does not consider other po-
tential factors involved in stereotype use that are fundamen-
tally tied to a perceiver’s own group identity. For instance,
once people categorise themselves as members of a particular
ingroup, they may represent outgroup individuals more nega-
tively, or in a way that accentuates perceived differences be-
tween ingroup and outgroup (Tajfel et al., 1971; Tajfel, 1981;
Gramzow et al., 2001; Dunham, 2018; Pietraszewski, 2020).
Although this paper deals purely with the possible epistemic
functions of social stereotype use, understanding the social
functions is no less important, especially as relates to the aim
of mitigating the negative impacts of stereotyping.
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